Публікація:
Usage of lstm models for natural language understanding

Завантаження...
Зображення мініатюри

Дата

2021

Назва журналу

ISSN журналу

Назва тома

Видавництво

ХНУРЕ

Дослідницькі проекти

Організаційні підрозділи

Видання журналу

Анотація

The problem of emotion classification is a complex task of language interpretation. In this work, a number of existing solutions for emotional classification problem were considered. The evaluation of performance of the considered models was conducted. The model for emotion classification in three-sentence conversations is proposed in this work. The model is based on smileys and word embeddings with domain specificity in state of art conversations on the Internet. The model performance is evaluated and compared with language processing model BERT. The proposed model is better at classifying emotions than BERT (F1 78 versus 75). However, modern performance of models for language representation did not achieve the human performance due to the complexity of natural language. There is a variety of factors to consider when choosing the word embeddings and training methods to design the model architecture.

Опис

Ключові слова

natural language processing, neural network, natural language

Бібліографічний опис

Daniiel Y. Usage of lstm models for natural language understanding / Y. Daniiel, K. Onyshchenko, N. Kameniuk // Бионика интеллекта. – 2021. – № 2 (97). – С. 20–26. – DOi: https://doi.org/10.30837/ bi.