Публікація:
Usage of lstm models for natural language understanding

dc.contributor.authorDaniiel, Y.
dc.contributor.authorOnyshchenko, K.
dc.contributor.authorKameniuk, N.
dc.date.accessioned2024-05-23T13:10:38Z
dc.date.available2024-05-23T13:10:38Z
dc.date.issued2021
dc.description.abstractThe problem of emotion classification is a complex task of language interpretation. In this work, a number of existing solutions for emotional classification problem were considered. The evaluation of performance of the considered models was conducted. The model for emotion classification in three-sentence conversations is proposed in this work. The model is based on smileys and word embeddings with domain specificity in state of art conversations on the Internet. The model performance is evaluated and compared with language processing model BERT. The proposed model is better at classifying emotions than BERT (F1 78 versus 75). However, modern performance of models for language representation did not achieve the human performance due to the complexity of natural language. There is a variety of factors to consider when choosing the word embeddings and training methods to design the model architecture.
dc.identifier.citationDaniiel Y. Usage of lstm models for natural language understanding / Y. Daniiel, K. Onyshchenko, N. Kameniuk // Бионика интеллекта. – 2021. – № 2 (97). – С. 20–26. – DOi: https://doi.org/10.30837/ bi.
dc.identifier.doihttps://doi.org/10.30837/ bi
dc.identifier.urihttps://openarchive.nure.ua/handle/document/26573
dc.language.isouk
dc.publisherХНУРЕ
dc.subjectnatural language processing
dc.subjectneural network
dc.subjectnatural language
dc.titleUsage of lstm models for natural language understanding
dc.typeArticle
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
PI_Bionika_2021_N2_20-26.pdf
Розмір:
572.85 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.55 KB
Формат:
Item-specific license agreed upon to submission
Опис: