Публікація: Математичні моделі і методи розпізнавання повітряних об’єктів в відеопотоці
Завантаження...
Дата
2021
Автори
Назва журналу
ISSN журналу
Назва тома
Видавництво
Анотація
Об’єкт дослідження – процес відеоспостереження за ЛО в оптичному та інфрачервоному діапазоні частот з використанням технологій трансферного на-вчання. Мета роботи – підвищення ефективності розпізнавання, порівняння та оцінка ефективності початкових нейронних мереж для заміни та навчання останнього шару для вирішення задач розпізнавання типа ЛО у відеопотоці.
Методи дослідження – технології трансферного навчання, нейронні ме-режі.
У роботі був проведений аналіз ефективності нейронних мереж для розпі-знавання літальних об’єктів в відеопотоці. Були побудовані та проаналізовані навчені моделі. Було досліджено та проаналізовано декілька навчених моделей нейронних мереж розпізнавання та детектування літальних об’єктів в відеопотоці, по-рівняно їх ефективність та їх доцільність використання у даній роботі. Розроб-лено програму, яка у реальному часі показує ймовірність знаходження в конкретному кадрі відеопотока літального об’єкту. Результати навчання моделі по-дані у вигляді графіків загальної точності та помилок. Результати роботи програми приведені у вигляді скріншотів з показаною ймовірністю віднесення літального об’єкту у кадрі до конкретного класу.
Опис
Ключові слова
нейронна мережа, повітряний об’єкт, метод трансферного навчання, inception v3, densenet
Бібліографічний опис
Пригорко М. Ю. Математичні моделі і методи розпізнавання повітряних об’єктів в відеопотоці : пояснювальна записка до кваліфікаційної роботи здобувача вищої освіти на другому (магістерському) рівні, спеціальність 113 Прикладна математика / М. Ю. Пригорко ; М-во освіти і науки України, Харків. нац. ун-т радіоелектроніки. – Харків, 2021. – 44 с.