Публікація:
FPGA-based Architecture for Image Processing using Convolutional Neural Networks

Завантаження...
Зображення мініатюри

Дата

Назва журналу

ISSN журналу

Назва тому

Видавець

MC&FPGA

Дослідницькі проекти

Організаційні одиниці

Випуск журналу

Анотація

This article explores the architecture of FPGA-based Convolutional Neural Networks (CNN) for image processing. It examines the key characteristics of FPGA platforms and their impact on the performance and efficiency of CNN implementation. Special attention is given to hardware optimization, including the use of specialized blocks and algorithmic optimizations. The article also discusses interfaces and interactions with other system components, as well as software aspects for the development, debugging, and integration of FPGA-based CNNs. Examples of applications in medical imaging, automotive industry, video surveillance, and other fields are provided. This article provides an overview of the architecture and optimization of FPGA-based CNNs for image processing, highlighting their potential in various computer vision applications.

Опис

Ключові слова

Applications, architecture, CNN, FPGA, hardware, image processing, interfaces, software

Цитування

Chumak, V. FPGA-based Architecture for Image Processing using Convolutional Neural Networks / V. Chumak, V. Tsivinskyi // V International Scientific and Practical Conference Theoretical and Applied Aspects of Device Development on Microcontrollers and FPGAs (MC&FPGA-2023), Kharkiv, Ukraine, 2023, pp. 44-46.

DOI

Схвалення

Рецензія

Доповнено

На які посилаються