Публікація:
On the construction of two-sided approximations to positive solutions of some elliptic problem

dc.contributor.authorKolosova, S.
dc.contributor.authorLukhanin, V.
dc.date.accessioned2018-03-29T13:47:51Z
dc.date.available2018-03-29T13:47:51Z
dc.date.issued2016
dc.description.abstractIn this paper we have investigated the existence, uniqueness and possibility of constructing of two-sided approximations to the positive solution of a heat conduction problem with two sources. The investigation is based on methods in operator equations theory in half-ordered spaces. In this case we have considered a nonlinear operator equation that corresponds to the initial boundary value problem in a cone of non-negative continous functions. The roperties of the corresponding operator define conditions which provide the existence and uniqueness of the solution. The conditions link the parameters of the problem implicitly meaning that they don’t provide the range of allowed values but need to be verified for each specific parameters value set separatelyuk_UA
dc.identifier.citationKolosova S. On the construction of two-sided approximations to positive solutions of some elliptic problem / S. Kolosova, V. Lukhanin // Econtechmod. An international quarterly journal on economics in technology,new technologies and modelling processes – 2016. – Vol. 5, № 4 – P. 11–19.uk_UA
dc.identifier.urihttp://openarchive.nure.ua/handle/document/4457
dc.language.isoenuk_UA
dc.publisherLUBLIN–RZESZOWuk_UA
dc.subjecttwo-sided approximationsuk_UA
dc.subjectoperator equationuk_UA
dc.subjectpositive solutionuk_UA
dc.subjectconcave operatoruk_UA
dc.titleOn the construction of two-sided approximations to positive solutions of some elliptic problemuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Kolosova_Lukhanin_ETM_4_2016.pdf
Розмір:
619.4 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис:

Колекції