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Abstract: In this paper we have investigated the 

existence, uniqueness and possibility of constructing of 

two-sided approximations to the positive solution of a 

heat conduction problem with two sources. 

The investigation is based on methods in operator 

equations theory in half-ordered spaces. In this case we 

have considered a nonlinear operator equation that 

corresponds to the initial boundary value problem in a 

cone of non-negative continous functions. The properties 

of the corresponding operator define conditions which 

provide the existence and uniqueness of the solution. The 

conditions link the parameters of the problem implicitly 

meaning that they don’t provide the range of allowed 

values but need to be verified for each specific 

parameters value set separately. 

During the investigation we have provided the 

scheme of a two-sided iteration process which must 

satisfy the conditions in order to converge to the positive 

solution from both sides. 

The computational experiment have been conducted 

in two domains – unit disk and unit half disk. We have 

applied both two-sided approximations method and 

Green’s quasifunction method for the problem solving. 

The obtained results are presented as a surface and level 

lines plots and also as a table. The results in 

corresponding domains obtained by different methods 

have been compared with each other. 

Key words: two-sided approximations, operator 

equation, positive solution, concave operator, conical 

interval, Green's function, Green's quasifunction. 

 

INTRODUCTION 

 

Modern science is highly interested in processes that 

take place in nonlinear environments. Mathematical 

models of these processes typically are represented by 

nonlinear boundary value problems of mathematical 

physics of the following form 
 

   ,,=Δ nRxufu    (1) 

 0,=|0,> uu  (2) 

 

where:   is a numerical parameter. 

Many profound problems are reduced to equation 

(1). For example: 

1) various problems in the theory of elasticity, where 

the parameter represents the load; 

2) temperature distribution during conduction of 

electrical current through a body (the parameter is a value 

of electrical current); 

3) auto-oscillation problems (the parameter is the 

unknown period) etc. 

More specifically, if  
 

  ueuf  , 

 

then problem (1), (2) is a mathematical model of a flow 

in conductive environment inside an impenetrable 

cylinder [1]; when  
 

  ueuf  , 

 

equation (1) is a stationery equation of the thermal theory 

of spontaneous ignition of chemically active gas mixture 

inside a vessel [2-5], in this case problem (1), (2) is called 

the Liouville-Gelfand problem; if  

 

  puuf  , 0p , 

 

then we have a mathematical model of gas density 

distribution in a star (equation (1) in that case is called 

the Lane–Emden equation) [6]; the problem of model 

selection of population migration in genetics leads to 

problem (1), (2) with  

   quuf  1   [7]; 

 

problem (1), (2) with  
 

  puuf   ,   pq uuuf   , 

    ueuf   ue  

 

are considered in [8, 9] and with  

  pq ubuauf  
, 0a , 0b , 0q , 0p  

 

in [10]. 

Problem (1), (2) is equivalent to the integral equation 

in C  

 

 ,))((),(=)( dssufsxGxu 


 (3) 
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where:  sxG  is a Green's function for the operator 

u  of the first boundary value problem in the domain  

 

 ,   nxxx  ,   nsss  . 

 

Now we rewrite equation (3) as follows:  

 

,Tuu   

 

where: dssufsxGTu ))((),(= 


 is an operator with 

domain   KTD  , K is a cone of non-negative 

functions in the space  C . 

It’s naturally to expect that the existence and 

uniqueness of the positive solution of equation (1), and 

hence problem (1), (2), significantly depends on 

properties of the operator T and the form of  uf , . The 

cases of monotone and antitone operator uT  are 

considered in [11-13]. 

Since the construction of Green's functions can be 

quite complicated even for two-dimensional problems 

there are only few cases for which a constructive solution 

can be obtained. In complex domains Green’s 

quasifunction method can be used [14]. The method is 

based on the construction of a boundary equation. R-

functions theory plays a significant role in solving this 

task [14, 15, 16]. 

In this work we investigate the following problem 

[8] 
 

 
0,=|0,>

,=Δ





uu

xuuu pq
 (4) 

 

where: 0>,<1<<0 pq .  

 

The equation of the problem (4) is a stationary heat 

conduction equation with two sources of different power 

and describes heat distribution over a plate (domain  ) 

that doesn’t change in time. It happens when stationary 

sources of heat act for a long time and transitional 

processes caused by them have been finished. The terms 

qu  and 
pu  represent the power of heat sources. 

 

EXISTENCE OF POSITIVE SOLUTIONS 

 

Problem (4) is equivalent to the integral equation in 

C  

 

 .)]()()[,(=)( dssususxGxu pq 


  (5) 

 

We need following definitions in the sequel [17-19]. 

Definition 1. A convex closed set K in Banach space 

E is called a cone if this set contains, together with each 

element u, ( u ), all the elements of the form tu  for 

t  and does not contain the element u , where   is 

the zero element of E. 

Definition 2. The cone K is called normal if there 

exists an KN  such that:  

 

vKNu   for vu  , Kvu  . 

 

More precisely, the cone K is called normal if there 

exists a   such that the inequality:  
 

  ff  

is satisfied for all  
 

Kff   ,   ff . 

 

The cone of non-negative functions is normal in the 

space C. 

Definition 3. The collection of elements Ku  for 

which   wuv  is called the conical interval 

  wv . 

Definition 4. An operator T is monotone  if 

TwTv   follows from wv  , Kwv  . 

Definition 5. An operator T is positive   if 

KTK  . 

Definition 6. Let E and F be Banach spaces. An 

operator, acting from E into F, is called completely 

continuous if it maps every bounded set of the space E 

onto a (relatively) compact set of the space F. 

Definition 7. Let  xuxf   be a non-negative 

and concave function (i.e. 

 

  xuxftxutxf   (6) 

 

for all t  u  and x ). Then an operator  

 

dssusfsxGTu ))(,,(),( 


  

 

is called u -concave on K  if 

 

   xuTuxu   u ,  , (7) 

 

where: Ku   is a fixed non-zero element.  

Suppose K is a cone of non-negative functions in 

C . Let 

 Tuu   (8) 

 

be an operator equation defined over K, where:  

 

 


dssususxGTu pq  

 

Since the cone K is normal and the function 

pq uuuf    is continuous in u, it follows that the 

operator T is completely continuous if it maps C  on 

itself [17, 18]. 
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First, we state 

Lemma 1. The operator T has following properties: 

1) T is monotone. 

2) There is a conical interval   wv  such that  

  wvwvT . 

3) T is u -concave, where: 

 

 


 dssxGu  

 

Proof. 1) The proof is trivial. 

2)  Let us build   wv . 

It is advised in [17] to put v  if  uxf   is 

monotonically increasing in u. Following this advice we 

get 
 

 


  dsvvsxGTvv
pq  

 

Therefore, the interval's left endpoint stays still if we 

apply the successive approximation scheme: 

 

 



 




n

dssususxGxu p
n

q
nn 

 (9) 

 

It means that we obtain approximations from above only 

instead of two-sided ones. 

 

Now we introduce the following concept. Let v  be  

 

 xxv   

where: x  in  ,  x , 

0>= const . 

 

Remark 1. The function x  can be constructed 

practically for any domain using R-functions theory [14]. 

Hence, 
 

 


  dsvvsxGv
pq  

 


dssssxG ppqq   

 



 dssssxG pqpqq   

 



 dssssxG pqpqq   

 

From the inequality   vv  it follows that 

 

 



 xdssssxG pqpqq   

or 

 



 dssssxG pqpq   




  x
x q

q





 

 

Then, squaring the last expression and applying the 

Cauchy-Schwarz inequality vuvu  : 

 






















 dssssxG pqpq   

  xq   

 







 dsssdssxG pqpq   

  xq   

or 
 

 




 dsssMx pqpqq   

 

where:  


 dssxGM

x
max  

 

Finally, we obtain 
 

 

dsssM

x

pqpqq

x















 

max

 (10) 

 

and this estimate is satisfied for any domain  . 

Let us find w . First we put 

 constw   Then, using the inequality 

  ww  and scheme (9) we obtain 

 

 


  dsswswsxGxw
pq  

 


 dssxG pq
 

 

It now follows that 
 

 



pq

L



 (11) 

 

where:  


dssxGL
x
max  

 

Thus, conditions (10) and (11) link parameters p, q 

and  ,  . The latter ones define the conical interval 

 

   wxv . 
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3) In order to show u -concavity we will use 

Definition 7. 

Since we have shown how to build   wv , it 

follows that (7) is satisfied. 

Furthermore, from (6)   







tt

tt
q

pqp
  

Now we define 





tt

tt
tg

q

p

:  

 

Solutions of the equation 

 

 0=)1)(1())((1 11 pqqp tqtttpt  
 (12) 

 

define maximum values of the function tg  for 

t .  

 

 

Let t  be a solution of (12). Now note that 

 







 qq

pp
tg

t
lim  

 

This implies that the parameters  , q, p, and the constant 

  must also satisfy 

 

 


























tt

tt

qq

pp
q

p
qpqp  max (13) 

 

This completes the proof of the lemma. 

Now, we build an iteration process for equation (8) 

by the following scheme 
 

 

.





















n

dsswswsxGxw

n

dssvsvsxGxv

p
n

q
nn

p
n

q
nn





 (14) 

 

 

The main result of this paper is 

Theorem 1. Process (14) converges to  xu  from 

both sides with respect to the norm of space C  if 

 , q, p,  ,   satisfy (10), (11), and (13), where 

 xu  is an exact positive single solution of equation 

(5) and 

 

 


 wwuvv   

 

Proof. First, we know that the cone CK  is 

normal. The operator T is completely continuous 

Ku , monotone and maps conical interval 

  wv  into itself by Lemma 1 if  , q, p,  ,   

satisfy (10), (11), and (13). It now follows that the 

equation has exactly one positive solution [17]. 

Then since the operator T is also u -concave by 

Lemma 1 and the cone K is normal it follows that process 

(14) converges to  xu  from both sides with respect to 

the norm of space C  [17]. 

This completes the proof of the theorem. 

 
 

GREEN'S QUASIFUNCTION 

 

Rvachev V.L. proposed to consider a special 

function which is close in particular sense to Green's one 

[14]. It's called Green's quasifunction. Now let's see how 

it can be established for problem (4). 

Let   be the normalized boundary equation of 

the first order on boundary  , namely 

 

 




xx

xx




 (15) 

 

Now we put 
 

  














Rsxrsx

Rsxrsx



 ln

 

 

where:  sxr  

 

The Green's quasifunction can be established as 

follows 
 









































Rsx
r

sxG

Rsx
r

sxG







ln

 

 

Then problem (4) can be reduced to nonlinear 

integral equation 

 

 













dssxKsu

dssususxGxu pq

 (16) 

 

where: ,),,(
2

1
=),( 2

2
2

2

2
1

2

Rsx
ss

sxK 






















 


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.),,(
4

1
=),( 3

2
3

2

2
2

2

2
1

2

Rsx
sss

sxK 



























 


 

 

Now we reduce (16) to a sequence of linear integral 

equations by applying the method of successive 

approximations [20] 

 

 



















m

dssususxG

dssxKsuxu

p
m

q
m

mm

  (17) 

 

where:  xxu  ,  const . 

Each of equations (17) can be solved by Bubnov-

Galerkin method [21]. In that case we have the following 

sequence of the solution approximations 

 

 


  xcxu iim

k

i
km   

 

where: xi  is a coordinate sequence, imc   ( ki  , 

m ) is a solution of a system of linear algebraic 

equations: 
 

































kj

dxdsxsususxG

dxdsxssxK

dxxxc

j
pq

ji

jii

k

i

,





 

 










dxxxc jiim

k

i

  (18) 
























mkj

dxdsxsu

susxG

dxdsxssxK

j
p

km

q
km

ji







 

 

 

COMPUTATIONAL EXPERIMENTS 

 

As an illustration of process (14) we now look at the 

examples in two domains using both Green's functions 

and quasifunctions. 

 

Example 1 (Unit Disk for Green's Function). Take 

 

   



 xxxxx  (19) 

 

 

 

The corresponding Green's function in the domain 

  is: 

 





























sxsx
sxG


lnln  

 

where: s  is a fixed point, 
s  is an 'image point' on 

the prolonged line segment from the disk center O to s 

such that  ,   is a distance from O to s, 
  is a 

distance from O to 
1s  (see Fig. 1). 

 

 

 
 

Fig. 1. Points for Green’s function expression in Disk 

domain 

 

 

The function x  is:  

 

 



 xxx  

 

It means that:  

 




x
x

max  

 

Now, by (10), so that: 

 



























 pqpq

M qpp

q






  (20) 

 

We have 0.04,M  0.25.L  

 

Using (11), (13), and (20) we put p , q , 

 , 0.5= ,  . 
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The surface of the upper approximation of the 

solution w  and its level lines are illustrated in Fig. 2 

and Fig. 3 respectively. 

 

 

Fig. 2. The surface of w  

 

 

Fig. 3. The level lines of w  

 

The values of the approximations 18v  and 18w  at 

the points of domain   in polar coordinates ),( ji  , 

ii 0.2= ,  jj 0.1= , 1,4=i , 1,5=j   are shown in 

Table 1. 

 

 

 

Table 1. The values of 18v  and 18w  

   

  

0.2 0.4 0.6 0.8 

10


 

18w  0.419061 0.357569 0.258870 0.133876 

18v  0.418969 0.357491 0.258815 0.133848 

5


 

18w  0.419073 0.357322 0.258291 0.133475 

18v  0.418981 0.357244 0.258235 0.133447 

10

3
 

18w  0.419096 0.357075 0.257844 0.133076 

18v  0.419004 0.356997 0.257788 0.133048 

5

2
 

18w  0.419131 0.357245 0.258149 0.133283 

18v  0.419039 0.357167 0.258094 0.133255 

2


 

18w  0.419188 0.358912 0.261326 0.135752 

18v  0.419095 0.358834 0.261270 0.135723 

 

 

Example 2 (Unit Disk for Green's Quasifunction). 
Let 

 

 )(1
2

1
=)( 2

2
2
1 xxx   (21) 

 

be the normalized boundary equation of the first order on 

 , where   is defined by (19). Indeed, conditions 

(15) are satisfied for (21). 

In this case equation (16) will be reduced to (5) 

which means that Greens' quasifunction is equal to 

Green's function in Disk region. 

Therefore, the results will be the same as in Example 1. 

 

Example 3 (Unit Half Disk for Green's Function). 
Take 

 

 .0>0,>1|),(== 2
2
2

2
121 xxxxxx    (22) 
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The corresponding Green's function in the domain 

  is 

,
||

1
ln

||

1
ln

||

1
ln

||

1
ln

2

1
=),(

1

1



























'sxsx

sxsx
sxG




 

where: s, 
1s ,   are described in Example 1, s , 's1

 are 

'image points' corresponding to s and 
1s  respectively 

(see Fig. 4). 

 

 
 

Fig. 4. Points for Green’s function expression in Half 

Disk domain 

 

The function )(x  is )(1=)( 2
2

2
12 xxxx   

meaning that 1.=)(max x
x




 

In this case we have 0.015,M  0.097.L  

 

Using (11), (13), and (20) we put 2=p , 0.5=q , 

8= , 0.5= , 1= . 

The surface of the upper approximation of the 

solution 15w  and its level lines are illustrated in Fig. 5 

and Fig. 6 respectively. 

 

 

 

Fig. 5. The surface of 15w  

 

 

The values of the approximations 15v  and 15w  at 

the points of domain   in polar coordinates ),( ji  , 

ii 0.2= ,  jj 0.1= , 1,4=i , 1,5=j  are 

shown in Table 2. 

 

 
 

Fig. 6. The level lines of 15w  

 

Example 4 (Unit Half Disk for Green's 

Quasifunction).  
Let 

 

 2
2
2

2
1 )(1

2

1
=)( xxxx   (23) 

 

be the normalized boundary equation of the first 

order on  , where   is defined by (22). Indeed, 

conditions (15) are satisfied for (23). 

Now we put 0.5= , so that 
 

.)(1
4

1
=)( 2

2
2

2
10 xxxxu   

 

 

Then we select the following coordinate sequence 

 

,0,2=,0,2=

1),(2)()(=)(

121

2211

iii

xPxPxx iii




 

 

where: ki 1,= , 6=k , )(zPm  are Legendre 

polynomials  

 

 .1)(
!2

1
=)( 2 m

m

m

mm z
dz

d

m
zP   

 

Solving the system of equations (18), we get the 

approximation of the solution 14,6u . Its surface and level 

lines are illustrated in Fig. 7 and Fig. 8 respectively. 
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Fig. 7. The surface of 14,6u  

 
 

 

Fig. 8. The level lines of 14,6u  

 

Table 2. The values of 15v  and 15w  

   
  

0.2 0.4 0.6 0.8 

10


 

15w  0.094379 0.159946 0.167969 0.109479 

15v  0.094362 0.159917 0.167939 0.109459 

5


 

15w  0.175253 0.284471 0.286695 0.179712 

15v  0.175221 0.284419 0.286643 0.179680 

10

3
 

15w  0.235852 0.371114 0.363978 0.223259 

15v  0.235808 0.371045 0.363910 0.223218 

5

2
 

15w  0.273067 0.421881 0.407777 0.247385 

15v  0.273017 0.421802 0.407701 0.247339 

2


 

15w  0.285590 0.438515 0.421797 0.255014 

15v  0.285537 0.438432 0.421718 0.254967 

 

The values of the approximation 14,6u  at the points of domain   in polar coordinates ),( ji  , ii 0.2= , 

 jj 0.1= , 1,4=i , 1,5=j  are shown in Table 3. 

 

Table 3. The values of 14,6u  

  
  

0.2 0.4 0.6 0.8 

10


 0.097834 0.160302 0.167488 0.111392 

5


 0.180005 0.285107 0.287184 0.183040 

10

3
 0.241369 0.372598 0.365651 0.226659 

5

2
 0.279068 0.424053 0.410050 0.250792 

2


 0.291761 0.441007 0.424467 0.258674 
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CONCLUSIONS 

 

We have built an iteration process that converges to a 

positive solution of (4) from both sides. Also, we have 

introduced a new approach for constructing conical 

intervals, as a left endpoint we )(=)(0 xxv   instead 

of 0=)(0 xv , where: 0>)(x  in  , 0=|)( x , 

and const= . 

This approach can be used when the lower 

approximations don't move from the starting position. 

We've obtained a condition that links parameters  , 

q, p,  ,   and guarantees existence and uniqueness of a 

positive solution. 

By building the cone segment 
00, wv  we provide 

an a priori estimate of the solution, since 
00 wuv  . 

The actual two-sided approximations allow us to make a 

posteriori conclusions. 

The algorithm implementation simplicity and 

relatively small computational resources are the main 

advantages of the provided method. 

Green's quasifunction method has been investigated 

to compare the results. The functions )(x  and )(x  

can be constructed using R-functions theory [14] in case 

of domains with complex boundary. 

The experimental results in unit disk and unit half 

disk have shown the efficiency of the provided method. It 

can be used to solve boundary value problems for 

stationary heat conduction equations of the form (4) or 

other problems that are reduced to (4). 
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