Публікація:
Some evidences of multiplicity fluctuations in relativistic nuclear collisions and Neural Networking (N-N) model

dc.contributor.authorAhmad, M. Ayaz
dc.contributor.authorVictoria, Anghel Drugarin C.
dc.contributor.authorBaker, Jalal H.
dc.contributor.authorLyashenko, V.
dc.date.accessioned2021-09-25T16:17:28Z
dc.date.available2021-09-25T16:17:28Z
dc.date.issued2020
dc.description.abstractThis study attempted to investigate some features of non-thermal phase transitions during the relativistic heavy ion collisions. The collisions that occurred were a beam of 28Si (projectile) hits the heterogeneous mixture of nuclear emulsion (fixed target) @ energy 14.6A GeV and we recorded 951 events of relativistic nuclear collisions. Thereafter, for the final statistical study, we made three different groups of data sets such as 28Si+CNO, 28Si+Emulsion and 28Si+AgBr. The results of the experiment was compared with neural network (N-N) model and a good agreement found between the theory and experiment of relativistic heavy ion collisions.uk_UA
dc.identifier.citationAhmad M. A., Victoria A. D C., Baker J. H., Lyashenko V. Some evidences of multiplicity fluctuations in relativistic nuclear collisions and Neural Networking (N-N) model // Academia Journal of Scientific Research. – 2020. – Vol. 8(12). – pp. 383-386.uk_UA
dc.identifier.issn2315-7712
dc.identifier.urihttps://openarchive.nure.ua/handle/document/17679
dc.language.isoenuk_UA
dc.publisherAcademia Publishinguk_UA
dc.subjectIntermittencyuk_UA
dc.subjectScaled Factorial Momentsuk_UA
dc.titleSome evidences of multiplicity fluctuations in relativistic nuclear collisions and Neural Networking (N-N) modeluk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
LyasArticle6.pdf
Розмір:
810.96 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: