Публікація:
Online Recurrent Me-thod Of Credibilistic Fuzzy Clusterin

dc.contributor.authorBodyanskiy, Ye. V.
dc.contributor.authorShafronenko, A. Yu.
dc.contributor.authorRudenko, D. A.
dc.contributor.authorKlymova, I. N.
dc.date.accessioned2020-11-14T14:07:35Z
dc.date.available2020-11-14T14:07:35Z
dc.date.issued2020
dc.description.abstractAn online method of reliable fuzzy clustering is proposed, designed to analyze data sequentially received for processing. A feature of the developed approach is the use of the membership function of a special kind described by the density function of the Cauchy distribution. The actual procedure for clarifying the centroids of clusters is essentially a self-learning rule “The Winner Takes More” (WTM), in which the neighborhood function is generated by the introduced membership function.uk_UA
dc.identifier.citationYe. Bodyanskiy, A. Shafronenko, D. Rudenko, I. Klymova Online Recurrent Me-thod Of Credibilistic Fuzzy Clustering. 5th International scientific and practical conference “Topical of the development of modern science” (January 15-17, 2020), Sofia, Bulgaria, P. 37-40uk_UA
dc.identifier.urihttp://openarchive.nure.ua/handle/document/13805
dc.language.isoenuk_UA
dc.subjectFuzzy clusteringuk_UA
dc.subjectprocessinguk_UA
dc.subjectgradient optimizationuk_UA
dc.subjectmembership leveluk_UA
dc.subjectonline modeuk_UA
dc.titleOnline Recurrent Me-thod Of Credibilistic Fuzzy Clusterinuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
Shafr_Publ.doc
Розмір:
154.5 KB
Формат:
Microsoft Word
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: