Публікація: Online Recurrent Me-thod Of Credibilistic Fuzzy Clusterin
dc.contributor.author | Bodyanskiy, Ye. V. | |
dc.contributor.author | Shafronenko, A. Yu. | |
dc.contributor.author | Rudenko, D. A. | |
dc.contributor.author | Klymova, I. N. | |
dc.date.accessioned | 2020-11-14T14:07:35Z | |
dc.date.available | 2020-11-14T14:07:35Z | |
dc.date.issued | 2020 | |
dc.description.abstract | An online method of reliable fuzzy clustering is proposed, designed to analyze data sequentially received for processing. A feature of the developed approach is the use of the membership function of a special kind described by the density function of the Cauchy distribution. The actual procedure for clarifying the centroids of clusters is essentially a self-learning rule “The Winner Takes More” (WTM), in which the neighborhood function is generated by the introduced membership function. | uk_UA |
dc.identifier.citation | Ye. Bodyanskiy, A. Shafronenko, D. Rudenko, I. Klymova Online Recurrent Me-thod Of Credibilistic Fuzzy Clustering. 5th International scientific and practical conference “Topical of the development of modern science” (January 15-17, 2020), Sofia, Bulgaria, P. 37-40 | uk_UA |
dc.identifier.uri | http://openarchive.nure.ua/handle/document/13805 | |
dc.language.iso | en | uk_UA |
dc.subject | Fuzzy clustering | uk_UA |
dc.subject | processing | uk_UA |
dc.subject | gradient optimization | uk_UA |
dc.subject | membership level | uk_UA |
dc.subject | online mode | uk_UA |
dc.title | Online Recurrent Me-thod Of Credibilistic Fuzzy Clusterin | uk_UA |
dc.type | Article | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: