Публікація:
Hurst Exponent as a Part of Wavelet Decomposition Coefficients to Measure Long-term Memory Time Series Based on Multiresolution Analysis

dc.contributor.authorLyashenko, V.
dc.contributor.authorMatarneh, R.
dc.contributor.authorBaranova, V.
dc.contributor.authorDeineko, Z.
dc.date.accessioned2018-06-25T10:42:16Z
dc.date.available2018-06-25T10:42:16Z
dc.date.issued2016
dc.description.abstractProcessing and analysis of data sequences using wavelet-decomposition and subsequent analysis of the all relevant coefficients of such decomposition is one of strong methods to study various processes and phenomena. The key point of data sequence analysis lies in the concept of Hurst exponent. This is due to the fact that Hurst exponent gives an indication of the complexity and dynamics of the correlation structure of any given time series taking into consideration the importance of Hurst exponent estimation for such analysis. There are various methods and approaches to find the Hurst exponent estimation with varying degrees of accuracy and complexity. Therefore, in this paper we have made an attempt to prove the possibility of considering an estimation of Hurst exponent based on the properties of coefficients of wavelet decomposition of a given time series. The obtained results which mainly based on the properties of detailing coefficients of wavelet decomposition show that estimation is easy to calculate and comparable with classic estimation of Hurst exponent. Also ratios has been obtained, that allow to analyze the self-similarity of a given time series.uk_UA
dc.identifier.citationLyashenko V., Matarneh R., Baranova V., Deineko Z. Hurst Exponent as a Part of Wavelet Decomposition Coefficients to Measure Long-term Memory Time Series Based on Multiresolution Analysis // American Journal of Systems and Software. – 2016. – Vol. 4(2). – P. 51-56.uk_UA
dc.identifier.issn2372-708X
dc.identifier.urihttp://openarchive.nure.ua/handle/document/6363
dc.language.isoenuk_UA
dc.publisherSciEPuk_UA
dc.subjectwavelet decompositionuk_UA
dc.subjectHurst exponentuk_UA
dc.titleHurst Exponent as a Part of Wavelet Decomposition Coefficients to Measure Long-term Memory Time Series Based on Multiresolution Analysisuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
ajss-4-2-4.pdf
Розмір:
373.08 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: