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Abstract  Processing and analysis of data sequences using wavelet-decomposition and subsequent analysis of the 
all relevant coefficients of such decomposition is one of strong methods to study various processes and phenomena. 
The key point of data sequence analysis lies in the concept of Hurst exponent. This is due to the fact that Hurst 
exponent gives an indication of the complexity and dynamics of the correlation structure of any given time series 
taking into consideration the importance of Hurst exponent estimation for such analysis. There are various methods 
and approaches to find the Hurst exponent estimation with varying degrees of accuracy and complexity. Therefore, 
in this paper we have made an attempt to prove the possibility of considering an estimation of Hurst exponent based 
on the properties of coefficients of wavelet decomposition of a given time series. The obtained results which mainly 
based on the properties of detailing coefficients of wavelet decomposition show that estimation is easy to calculate 
and comparable with classic estimation of Hurst exponent. Also ratios has been obtained, that allow to analyze the 
self-similarity of a given time series. 
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1. Introduction 

The analysis and processing of a sequence of the data 
presented in the form of time series is one of the prevalent 
methodologies in studying various processes and phenomena 
which are concerned to different fields of activity and 
researches. This is due to the fact that data about a 
phenomenon or a process under study can be represented as 
a time series. Banking sector [1,2], securities market [3,4], 
health, when studying the dynamics of the analyzed processes 
[5] and in medicine, when the initial data are represented 
using time series or when the source data is converted 
from one form of representation into a time series are all 
good examples of such domains [6]. One of the important 
research methods of time series is a Wavelet analysis 
[7,8,9,10]; because it allows us to highlight the characteristics 
of time series, where the more important role played in this 
analysis is by wavelet decomposition, taking into consideration 
that the tool for decomposition on a set of different wavelet 
coefficients is the multiresolution analysis [11]. 

A multiresolution wavelet-analysis transforms time 
series to hierarchical structure by means of the wavelet 
transformations which results into a set of wavelet coefficients. 

On each new level of wavelet- decomposition there is a 
division of an approximating signal of the previous level 
(presented by some time series) on its high-frequency 
component and on more smoothed approximating signal [12]. 
Thus, the multiresolution analysis splits the time series into 
two components: (1) approximating coefficients and (2) 
detailing coefficients. 

One of the characteristics of coefficients of wavelet 
decomposition is the Hurst exponent [13] which connects 
coefficients of wavelet decomposition at different levels 
of decomposition, besides that, the Hurst exponent also 
plays as an indicator of the complexity of dynamics and 
correlation structure of time series. The pervious 
discussion makes it possible to talk about the properties of 
the coefficients of wavelet decomposition and the role of 
Hurst exponent in determining these properties, while 
Particular importance in such analysis of time series 
belongs to detailing coefficients of wavelet decomposition. 

2. Materials and Methods 
According to discrete wavelet-transformation the time 

series ( )X t , ( 1 2, ,...t t t= ) consists of a set of coefficients 
– detailing and approximating [10,11,13,14]: 
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Where ( 1, )apr N k− – Approximating wavelet-coefficients 
of level N  
det( , )j k – Detailing wavelet-coefficients of level j  
N – Chosen maximum level of decomposition 

jN  – Quantity of detailing coefficients at j  level of 
decomposition 

aN  – Quantity of approximating coefficients at level N  
( )tψ  – Mother wavelet-function 
( )tφ  – Corresponding scaling-function. 

 ,( , ) ,X j kd j k X ψ=  (2) 

Where ( , )Xd j k  – Detailing wavelet-coefficients 1, jk N=  

at level j , ,, j kX ψ  – Scalar product of investigated 

sequence of data in the form of time series ( )X t and a 
mother wavelet ψ  on corresponding level of 
decomposition j . 

In this case, the main tool to analyze time series is by 
processing the detailing coefficients which have been 
obtained on different levels. As a result the obtained series 
of the detailing coefficients will have the following 
properties [10,14,15]: 

1. If time series ( )X t  is a self-similar process, then 

detailing coefficients ( , )Xd j k , 1, jk N= at each 
level of decomposition j  are all self-similar, which 
is mean that equal distribution of small series of 
wavelet coefficients at each level of decomposition 
with some scale will take the form: 

 1( )
2

( ( ,1), ( , 2),..., ( , ))

2 ( (0,1), (0, 2),..., (0, ))

X X X j

j H
X X X j

d j d j d j N

d d d N
+

≅
 (3) 

Where 1, 1j N= − . 
2. Wavelet coefficients resulting from the decomposition 

process with fixed increments will be fixed for each 
level 2 j  ( 1, 1j N= − ). 

3. If there are moments of order P then the coefficients 
of small waves that were obtained as a result of the 
decomposition process must satisfy the following 
equation: 

 
1( )
2( , ) (0, ) 2

jp Hp p
X XM d j k M d k

+   =      
 (4) 

 2 2 (2 1)( ( , )) ( (0, )) 2 j H
X XM d j k M d k +   =     (4a) 

Where [ ]...M  1, 1j N= −  – estimation value of the 
process. 

4. If time series ( )X t  is self-similar, then the 
correlation function of wavelet-coefficients of j  
level will decrease according to: 

 [ ] 2( )( , ) ( , ) ,H n
X XM d j k d j k n n nψ−

+ ≅ →∞  (5) 

Where nψ  – number of zero moments of a mother 
waveletψ . 

5. For all different levels of decomposition 1 2j j≠ and 
for all n correlations of detailing coefficients of these 
levels, 1( , )Xd j k and 2( , )Xd j k n+ must equal to 0. 

6. Detailing coefficients of DWT at each level of 
decomposition j  have normal distribution with a 
zero average (0, )N σ . 

It is clear that the detailing Hurst exponent ( H ) has 
been used when considering the properties of wavelet 
decomposition coefficients, which represents a measure of 
self-similarity. Hurst's exponent lies within the range 
0 1H< <  and represents a key measure for the analysis of 
long-term dependence duration. In the case when Hurst's 
exponent lies in range 0.5 1H< < , this mean that the 
time series is persistent and has a trend-stable behavior, 
but when Hurst's exponent lies in range 0 0.5H< < , this 
refers to anti-persistent process (growth in the past means 
reduction in the future, and the tendency to reduction in 
the future makes probable increase in the future). At 

0.5H =  the deviations of the process are really casual 
and don't depend on the previous values. Therefore, the 
estimation of Hurst exponent values is an important task. 
There are various methods to estimate Hurst exponent 
[16,17,18,19,20], but all of them provide only approximate 
values, while some of them have a high computational 
complexity. In this work we propose a new method to 
estimate the Hurst exponent to expand the existing approaches 
to analyze the time series, using individual properties of 
detailing coefficients of wavelet decomposition 

3. Data for Analysis 

To test the obtained results, we will use the self-similar 
time series, which are presented in Figure 1, Figure 2 and 
Figure 3. 

 
Figure 1. A modeling time series - Brownian motion ( 0.68H = ) 
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Figure 2. A modeling time series - Brownian motion ( 0.75H = ) 

 
Figure 3. A modeling time series - Brownian motion ( 0.92H = ) 

4. Results and Discussion 

Let us consider the property in point 3 which is 
presented in equation (4). This property takes into 
consideration the value of the Hurst exponent and can be 
represented as follows: 
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By admitting logarithm into equation (6): 
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Which can be transformed into: 
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Or 
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So equation (9) can be used to calculate the values of 
the Hurst exponent. But we have to make one comment: 
When we consider the property in point 3 which is 
presented in equation (4) for the detailing coefficients of 
the wavelet decomposition, we, in fact, operate with the 
module provided by the coefficient values ( ( , )Xd j k to 
calculate the mathematical expectation ( [ ]...M ). At the 
same time in the traditional case it is the mathematical 
expectation of the aggregate coefficients ( ( , )Xd j k , which 
are presented without a module (see equation. 4a). The 
assumption that the mathematical expectation [ ]...M can 
be negative makes equation (9) meaningless. So, it should 
be borne in mind that: 

 [ ]... ... .M M  ≥   (10) 

More clearly 

 ( , ) ( ( , ))p p
x xM d j k M d j k   ≥    

 (11) 

Thus, when calculating the Hurst exponent in 
accordance with equation (9) an error may occur. Table 1 
shows the calculation of the Hurst exponent for time series 
in accordance with the classical approaches using equation 
(9), where all calculations were performed in MATLAB. 
Hereinafter, for the wavelet decomposition of a specified 
time series, we use wavelet db1, knowing that experiments 
have shown that the use of other wavelets gives similar 
results. 

Table 1. Values of the Hurst exponent for a specified time series 

Hurst Parameter Estimation 
Time series 

Figure 1 Figure 2 Figure 3 

Discrete second derivative estimator (DSOD) 0.6672 0.7622 0.9206 

Wavelet version of DSOD 0.6620 0.7538 0.9233 

Wavelet details regression estimator 0.6531 0.7332 0.8900 

Equation (9), 7j = :    

1p =  0.6368 0.7585 0.8713 

2p =  0.6490 0.7516 0.8714 

3p =  0.6598 0.7445 0.8682 

4p =  0.6688 0.7381 0.8636 

 



 American Journal of Systems and Software 54 

The data in Table 1 shows that the value of Hurst 
exponent calculated by equation (9) are comparable with 
the values of the Hurst exponent which are designed in 
accordance with conventional approaches. Therefore, 
equation (9) can be used to estimate the value of the Hurst 
exponent. Consider the two levels of decomposition 
( 1 2j and j ) for the same series ( )X t . Then, using 
equation (9) we get: 
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But 1 2H H≅  (on the basis of self-similarity of the time 
series ( )X t  [14]), therefore: 
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The equations (16-18) can be used as an indicators of 
the self-similar time series. Table 2 shows the calculations 

for different ratios according to equation (17) for a 
specific time series. 

Table 2 shows that the values obtained in accordance 
with equation (17) are comparable within the specified 
terms of comparison. However, it should be noted that the 
closer levels of decomposition of time series the more 
comparable calculated values in accordance with equation 
(17). By rewriting equation (16) we get: 
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Table 2. The comparability of values for the equation (17) 

Comparable conditions 
Time series 

Figure 1 Figure 2 Figure 3 

1 7 2 5 1j j p= = =  27.2841 30.2050 32.9117 

1 5 2 7 1j j p= = =  27.5619 29.6030 33.1274 

1 7 2 5 2j j p= = =  110.3080 120.1508 131.6537 

1 5 2 7 2j j p= = =  110.8266 118.2124 132.1597 

1 7 2 5 3j j p= = =  250.5134 268.8135 295.5375 

1 5 2 7 3j j p= = =  250.2070 265.8349 296.7108 

1 7 2 5 4j j p= = =  448.8262 475.4117 523.6084 

1 5 2 7 4j j p= = =  445.9148 473.0703 526.6400 

1 9 2 6 1j j p= = =  45.1889 49.4181 54.0979 

1 6 2 9 1j j p= = =  45.7336 49.2112 54.9194 

1 9 2 6 2j j p= = =  181.3358 199.1977 216.9567 

1 6 2 9 2j j p= = =  183.8070 197.4284 219.5123 

1 9 2 6 3j j p= = =  408.2816 449.8565 487.8387 

1 6 2 9 3j j p= = =  414.4472 443.9703 492.6907 

1 9 2 6 4j j p= = =  724.8931 800.5587 865.2227 

1 6 2 9 4j j p= = =  737.7660 787.7358 873.0272 

1 6 2 5 1j j p= = =  22.8668 24.6056 27.4597 

1 5 2 6 1j j p= = =  22.9683 24.6692 27.6062 

1 6 2 5 2j j p= = =  91.9035 98.7142 109.7562 

1 5 2 6 2j j p= = =  92.3555 98.5104 110.1331 

1 6 2 5 3j j p= = =  207.2236 221.9852 246.3453 

1 5 2 6 3j j p= = =  208.5058 221.5291 247.2590 

1 6 2 5 4j j p= = =  368.8830 393.8679 436.5136 

1 5 2 6 4j j p= = =  371.5957 394.2253 438.8667 
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Based on the above, equation (23) can be used to find 
the mathematical expectation of detailing coefficients for 
various levels of wavelet decomposition of the original 
time series, besides, it is also possible to consider an 
expression for different values of p  ( 1 2p and p ) with 
same values on a specific level of decomposition j , such 
that: 
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The equations (25) – (27) can be used as an indicators 
of the self-similar of the time series. Table 3 shows 
calculations for different ratios in accordance with 
equation (26) for a specified time series. 

Table 3 shows that the values obtained in accordance 
with formula (26) are comparable within the specified 
terms of comparison. Thus, the data confirm the 
theoretical calculations, allowing to use equations  
(25) – (27) in the study and comparison of dynamics of 
different time series. 

Table 3. The comparability of values for equation (26) 

Comparable conditions 
Time series 

Figure 1 Figure 2 Figure 3 

7 1 1 2 4j p p= = =  27.2841 30.2050 32.9117 

7 1 4 2 1j p p= = =  28.0516 29.7132 32.7255 

7 1 2 2 4j p p= = =  55.1540 60.0754 65.8268 

7 1 4 2 2j p p= = =  56.1033 59.4265 65.4511 

7 1 3 2 4j p p= = =  83.5045 89.6045 98.5125 

7 1 4 2 3j p p= = =  84.1549 89.1397 98.1766 

3 1 1 2 4j p p= = =  8.8516 9.5777 10.8561 

3 1 4 2 1j p p= = =  8.7740 9.4755 10.8636 

3 1 2 2 4j p p= = =  17.6967 19.0549 21.7555 

3 1 4 2 2j p p= = =  17.5479 18.9511 21.7272 

3 1 3 2 4j p p= = =  26.4530 28.4788 32.6209 

3 1 4 2 3j p p= = =  26.3219 28.4266 32.5908 

10 1 1 2 4j p p= = =  41.2881 44.2505 48.5203 

10 1 4 2 1j p p= = =  41.0870 45.0553 48.0098 

10 1 2 2 4j p p= = =  82.7961 89.2490 96.6220 

10 1 4 2 2j p p= = =  82.1741 90.1106 96.0197 

10 1 3 2 4j p p= = =  123.7996 134.7129 144.4206 

10 1 4 2 3j p p= = =  123.2611 135.1659 144.0295 

5. Conclusions 

In this paper, have been highlighted the main points 
regarding the use of multiresolution wavelet analysis as a 
method of analysis for data sequence. We also looked at 
the relationship and the value of the Hurst exponent in 
accordance with the properties of the decomposition of 
wavelet coefficients of time series at different levels. 
Based on the properties of decomposition of detailing 
wavelet coefficients, we have shown the possibility of 
settlement to obtain an estimate the Hurst exponent for 
self-similar time series. For example, we have 
demonstrated the feasibility to estimate Hurst exponent for 
time series presented by Brownian motion, and at the 
same time we have discussed and shown the main causes 
of errors in the calculated ratios to assess the Hurst 
exponent values, where the validity of all obtained 
theoretical results had been confirmed by a number of 
examples. 
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