Публікація:
Comparative analysis of machine learning classification оf time series with fractal properties

dc.contributor.authorRadivilova, T.
dc.contributor.authorKirichenko, L.
dc.contributor.authorBulakh, V.
dc.date.accessioned2023-04-13T21:27:29Z
dc.date.available2023-04-13T21:27:29Z
dc.date.issued2019
dc.description.abstractThe article analyses the classification of time series according to their fractal properties by machine learning. The classification was carried out using neural networks and the random forest method. Objects were the model fractal time series with given the Hurst exponent. Each class was a set of time series with the Hurst exponent values in a predetermined range. Input features were the values of time series. It was demonstrated that in this case the classification accuracy is high enough. The most accurate classification results were obtained using recurrent neural network. The proposed method can be readily used in practice for recognition, classification and clustering of time series with fractal properties.
dc.identifier.citationRadivilova T. Comparative analysis of machine learning classification оf time series with fractal properties / T. Radivilova, L. Kirichenko, V. Bulakh // 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL*2019) : сonference proceedings, Sozopol, Bulgaria, 6-8 September 2019. – P. 557–560.
dc.identifier.urihttps://openarchive.nure.ua/handle/document/22624
dc.subjectfractal time series
dc.subjecttime series classification
dc.subjectHurst exponent
dc.subjectrandom forest
dc.subjectneural networks
dc.titleComparative analysis of machine learning classification оf time series with fractal properties
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
28.pdf
Розмір:
919 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.64 KB
Формат:
Item-specific license agreed upon to submission
Опис: