Публікація:
Бустинг

dc.contributor.authorСамченко, С. О.
dc.date.accessioned2024-08-23T07:14:26Z
dc.date.available2024-08-23T07:14:26Z
dc.date.issued2024
dc.description.abstractBoosting is a powerful machine learning technique that combines multiple weak models to create a strong ensemble model. It is based on the idea of iterative learning, during which each subsequent model focuses on the mistakes made by previous models. One of the most common boosting options is AdaBoost (Adaptive Boosting), developed by Freund and Schapire in 1996. This method has high accuracy on complex problems and is robust to overfitting, which allows its wide application in various fields such as classification and regression. AdaBoost uses error weighting to update the weights of the samples in the training set, which improves its efficiency. In addition to AdaBoost, there are other popular boosting algorithms, such as Gradient Boosting, XGBoost, LightGBM and CatBoost, which are also successfully used in practice. It is important to properly configure boosting parameters to achieve optimal model performance.
dc.identifier.citationСамченко С. О. Бустинг / С. О. Самченко ; наук. керівник О. Є. Путятiна // Радіоелектроніка та молодь у XXI столітті : матеріали 28-го Міжнар. молодіж. форуму, 16–18 квіт. 2024 р. – Харків : ХНУРЕ, 2024. – Т. 2. – С. 45–46.
dc.identifier.urihttps://openarchive.nure.ua/handle/document/27948
dc.language.isouk
dc.publisherХНУРЕ
dc.subjectboosting
dc.subjectбустинг
dc.titleБустинг
dc.typeThesis
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
INF_NT2_RiM_2024-45-46.pdf
Розмір:
449.93 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.55 KB
Формат:
Item-specific license agreed upon to submission
Опис: