Публікація:
CAMShift Algorithm for Human Tracking in the Collaborative Robot Working Area

dc.contributor.authorGurin, D.
dc.contributor.authorYevsieiev, V.
dc.contributor.authorMaksymova, S.
dc.contributor.authorAhmad Alkhalaileh
dc.date.accessioned2024-08-11T16:47:13Z
dc.date.available2024-08-11T16:47:13Z
dc.date.issued2024
dc.description.abstractThis article considers the complex implementation of the CAMShift algorithm for human tracking in the collaborative robot working area. he study covers both the algorithmic and mathematical underpinnings of CAMShift, detailing the underlying principles and mathematical models used to improve tracking accuracy. A Python program was developed in the PyCharm environment to effectively implement this algorithm, taking into account aspects such as real-time processing and integration with robotic systems. The research conducted a comprehensive assessment of the tracking speed, studied how effectively the algorithm works in different condition s and how it affects the overall sensitivity of the system. The results demonstrate the effectiveness of the CAMShift algorithm in providing accurate and timely tracking, highlighting its suitability for dynamic and interactive environments. This work helps to optimize the performance of collaborative robots by improving tracking capabilities, enabling better interaction and safety in shared work areas.
dc.identifier.citationCAMShift Algorithm for Human Tracking in the Collaborative Robot Working Area / D. Gurin, V. Yevsieiev, S. Maksymova., Ahmad Alkhalaileh // Journal of Universal Science Research. – 2024. – Vol. 2(8). – P. 87–101.
dc.identifier.issn2181-4570
dc.identifier.urihttps://openarchive.nure.ua/handle/document/27728
dc.language.isoen
dc.publisherJournal of Universal Science Research
dc.subjectIndustry 5.0,
dc.subjectCollaborative Robots
dc.subjectCAMShift algorithm
dc.subjectTracking People
dc.subjectComputer Vision
dc.subjectWork Area
dc.titleCAMShift Algorithm for Human Tracking in the Collaborative Robot Working Area
dc.typeArticle
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
N3-GYMA-2024.pdf
Розмір:
973.22 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.55 KB
Формат:
Item-specific license agreed upon to submission
Опис: