Публікація:
Online algorithm for possibilitic fuzzy clustering based on evolutionary cat swarm optimization

dc.contributor.authorBodyanskiy, Ye. V.
dc.contributor.authorShafronenko, A. Yu.
dc.date.accessioned2020-11-13T19:48:17Z
dc.date.available2020-11-13T19:48:17Z
dc.date.issued2019
dc.description.abstractThe problem of clustering of multidimensional observations is often found in many applications related to data mining and exploratory data analysis. The traditional approach to solving these problems requires that every observation could belong to only one cluster at a more natural is situations when a feature vector with the various possible levels of memberships can belong to multiple classes. This situation is the subject of fuzzy cluster analysis, rapidly developing now. We propose online adaptive approach for this task solving.uk_UA
dc.identifier.citationYe. Bodyanskiy, A. Shafronenko Online algorithm for Рossibilitic fuzzy clustering based on evolutionary cat swarm op-timization. Science and Education a New Dimension. Natural and Tech-nical Sciences - VII(23), Issue: 193, 2019 - P. 86-88uk_UA
dc.identifier.urihttp://openarchive.nure.ua/handle/document/13787
dc.language.isoenuk_UA
dc.subjectFuzzy clusteringuk_UA
dc.subjectlearning ruleuk_UA
dc.subjectcat swarm optimizationuk_UA
dc.subjecttracing modeuk_UA
dc.subjectseeking modeuk_UA
dc.titleOnline algorithm for possibilitic fuzzy clustering based on evolutionary cat swarm optimizationuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
Shafronenko_A_article1.doc
Розмір:
138 KB
Формат:
Microsoft Word
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: