Публікація:
Galois Field Augmentation Model for Training of Artificial Neural Network in Dentistry

dc.contributor.authorКривенко, С. А.
dc.contributor.authorБезрук, В. М.
dc.date.accessioned2020-08-13T14:53:16Z
dc.date.available2020-08-13T14:53:16Z
dc.date.issued2021
dc.description.abstractIn work entitled “Galois Field Augmentation Model for Training of Artificial Neural Network in Dentistry,” the authors consider how to label and save a large number of images that should be predicted in a single file. The technique of automatic labeling the dataset with the finite element model for training of artificial neural network in tomography is proposed. A simple transparent example of thirty-two images to be predicted in a single HDF5 file training of artificial neural network in tomography shows accuracy of 100% for training set as well for the test set. Then this technique is able to build an information model of salivary immune and periodontal status and to evaluate the correlation between salivary immunoglobulin level, inflammation in periodontal tissues and orthodontic pathology. The results showed changes in the antioxidant balance in children with atopy that were expressed in an increase in malondialdehyde level, a decrease in superoxide dismutase activity and a level of reduced glutathione. These indicators can be considered as biological markers of the development of gingivitis at the preclinical stage in children against atopic diseases.uk_UA
dc.identifier.citationValeryi M. Bezruk, Stanislav A. Krivenko, and Liudmyla S. Kryvenko, "Galois Field Augmentation Model for Training of Artificial NeuralNetwork in Dentistry," Springer, 2021, pp. 339-271uk_UA
dc.identifier.issn2367-4512
dc.identifier.urihttp://openarchive.nure.ua/handle/document/12685
dc.language.isoen_USuk_UA
dc.publisherSpringeruk_UA
dc.relation.ispartofseriesLecture Notes on Data Engineering and Communications Technologies;
dc.subjectregression analysesuk_UA
dc.subjectatopic diseaseuk_UA
dc.subjectgingivitisuk_UA
dc.subjectconvolutional neural networks (CNN)uk_UA
dc.titleGalois Field Augmentation Model for Training of Artificial Neural Network in Dentistryuk_UA
dc.typeBook chapteruk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Kry2020springer.pdf
Розмір:
58.16 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: