Публікація:
Methods for Medical Images Contrast Measuring and Enhancement to Improve the Accuracy of Pathology Detection

dc.contributor.authorRybalka, A.
dc.contributor.authorKutsenko, A.
dc.contributor.authorMegel, Y.
dc.contributor.authorKovalenko, Sergii
dc.contributor.authorKovalenko, Svitlana
dc.date.accessioned2023-02-09T16:41:33Z
dc.date.available2023-02-09T16:41:33Z
dc.date.issued2022
dc.description.abstractThe article describes the process of developing software for enhancing the contrast of radiographs and comparing the impact of these methods on the accuracy of determining the pathology. The paper provides an overview and analysis of the use of artificial neural networks in various fields of medicine. This research describes and implements contrast enhancement methods, such as: image contrast enhancement method using entropy, image contrast enhancement method using standard deviations of local neighborhood element brightness values, local contrast non-linear transformation method, image contrast enhancement method using statistical determination of local contrasts, method using the standard deviation of the intensities of the elements of the local neighborhood of the image. The results of the methods were compared using data analysis. As a result, software was developed to enhance image contrast and train the neural network of the VGG16 architecture.
dc.identifier.citation Methods for Medical Images Contrast Measuring and Enhancement to Improve the Accuracy of Pathology Detection / A. Kutsenko, Y. Megel, S. Kovalenko et all // Metrology and Metrology Assurance (MMA) : proceedings of the XXXII International Scientific Symposium, 7-9 september 2022. – Sozopol, 2022. – P. 1-6.
dc.identifier.urihttps://openarchive.nure.ua/handle/document/21743
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.subjectmedicine
dc.subjectdiagnostics
dc.subjectradiograph
dc.subjectdigital image processing
dc.titleMethods for Medical Images Contrast Measuring and Enhancement to Improve the Accuracy of Pathology Detection
dc.typeConference proceedings
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
MMA_2022_paper_EN_26.pdf
Розмір:
935.15 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.64 KB
Формат:
Item-specific license agreed upon to submission
Опис: