Публікація: Measuring multimedia content proximity via artificial intelligence methods
dc.contributor.author | Rybalka, A. I. | |
dc.contributor.author | Megel, Y. E. | |
dc.contributor.author | Mikhnova, O. | |
dc.date.accessioned | 2021-03-04T20:08:17Z | |
dc.date.available | 2021-03-04T20:08:17Z | |
dc.date.issued | 2020 | |
dc.description.abstract | The paper describes existing and novel approaches to word sequence similarity measuring which uses image processing procedures to reveal proximity relations between words and their meaning. This is implemented due to the fact the each word sequence can be associated with a particular pictorial domain, and thus any textual information can be potentially presented via an image series. Theoretical results of rule based approach, genetic algorithms and neural networks application are analyzed in terms of solving the problem under study. The proposed information processing technology may be useful for automatic translation applications, known as CAT-tools by now, search engine optimization, etc. | uk_UA |
dc.identifier.citation | Rybalka A. I. Measuring multimedia content proximity via artificial intelligence methods / Rybalka A. I., Megel Y. E., Mikhnova O. //Metrology and metrology assurance: Works of 30th International Scientific Symposium September 7 -11, 2020, Sozopol, Bulgaria. | uk_UA |
dc.identifier.uri | http://openarchive.nure.ua/handle/document/14772 | |
dc.language.iso | en | uk_UA |
dc.publisher | Technical University of Sofia | uk_UA |
dc.subject | computer-assisted translation | uk_UA |
dc.subject | evolutionary approach | uk_UA |
dc.subject | multimedia processing | uk_UA |
dc.subject | neural network | uk_UA |
dc.title | Measuring multimedia content proximity via artificial intelligence methods | uk_UA |
dc.type | Conference proceedings | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- Rybalka_MMA_20_.pdf
- Розмір:
- 312.82 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: