Публікація:
Visualizing Feasible Regions for Optimization Problems on High-Dimensional Permutations using Dimensionality Reduction Methods

dc.contributor.authorGrebennik, I
dc.contributor.authorChorna, O.
dc.contributor.authorUrniaieva, I
dc.date.accessioned2024-06-26T12:59:30Z
dc.date.available2024-06-26T12:59:30Z
dc.date.issued2023
dc.description.abstractThis paper presents an investigation on the usage of modern dimensionality reduction methods for classic combinatorial optimization problems. We propose the use of t-Distributed Stochastic Neighbor Embedding (t-SNE) method to visualize feasible regions on high-dimensional permutations, aiming to avoid the consequences of combinatorial explosion. The results of the study indicate that the proposed approach can provide valuable insights and improve the understanding of the solution space of high-dimensional permutations for the application of local search approaches.
dc.identifier.citationGrebennik I. Urniaieva Visualizing Feasible Regions for Optimization Problems on High-Dimensional Permutations using Dimensionality Reduction Methods / I. Grebennik, O. Chorna, I. Urniaieva // 2023 13th International Conference on Advanced Computer Information Technologies (ACIT), Wrocław, Poland, 2023. - pp. 126-130.
dc.identifier.doihttps://doi.org/10.1109/ACIT58437.2023.10275497
dc.identifier.urihttps://openarchive.nure.ua/handle/document/27198
dc.language.isoen
dc.subjectpermutations
dc.subjectdimensionality reduction
dc.subjectcombinatorial optimization
dc.subjectpermutohedron
dc.subjectt-SNE method
dc.subjectadjacency
dc.titleVisualizing Feasible Regions for Optimization Problems on High-Dimensional Permutations using Dimensionality Reduction Methods
dc.typeConference proceedings
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Visualizing.pdf
Розмір:
880.81 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.55 KB
Формат:
Item-specific license agreed upon to submission
Опис: