Публікація:
Development of Effective Methods for Structural Image Recognition Using the Principles of Data Granulation and Apparatus of Fuzzy Logic

dc.contributor.authorDaradkeh Yousef Ibrahim
dc.contributor.authorTvoroshenko, I. S.
dc.contributor.authorGorokhovatskyi, V. O.
dc.contributor.authorLatiff, L. A.
dc.contributor.authorAhmad N.
dc.date.accessioned2021-03-19T12:31:16Z
dc.date.available2021-03-19T12:31:16Z
dc.date.issued2021
dc.description.abstractABSTRACT The processes of intelligent data processing in computer vision systems have been researched. The problem of structural image recognition is relevant. This is a promising way to assess the degree of similarity of objects. This approach provides the simplicity of construction and the high reliability of decision making. The main problemof an effective description of characteristic features is the distortion of fragments of analyzed objects. The reasons for changing the input data can be the actions of geometric transformations, the in uence of background or interference. The elements of false objects with similar characteristics are formed. The problem of ensuring high-quality recognition requires the implementation of effective means of image processing. Methods of statistical modeling, granulation of data and fuzzy sets, detection and comparison of keypoints on the image, classi cation and clustering of data, and simulation modelling are used in this research. The implementation of the proposed approaches provides the formation of a concise description of features or a vector representation of unique keypoints. The veri cation of theoretical foundations and evaluation of the effectiveness of the proposed data processingmethods for real image bases is performed using theOpenCV library. The applied signi cance of thework is substantiated according to the criterion of data processing timewithout reducing the characteristics of reliability and interference immunity. The developed methods allow to increase the structural recognition of images by several times. Perspectives of research may involve identifying the optimal number of keypoints of the base set. uk_UA
dc.identifier.citationDaradkeh, Y.I., Tvoroshenko, I., Gorokhovatskyi, V., Latiff, L.A., and Ahmad, N. (2021) Development of Effective Methods for Structural Image Recognition Using the Principles of Data Granulation and Apparatus of Fuzzy Logic, IEEE Access, 9, pp. 13417-13428, DOI: 10.1109/ACCESS.2021.3051625uk_UA
dc.identifier.urihttp://openarchive.nure.ua/handle/document/15013
dc.language.isoen_USuk_UA
dc.subjectcomputer visionuk_UA
dc.subjectdata granulationuk_UA
dc.subjectfuzzy logicuk_UA
dc.subjectuniqueness indexuk_UA
dc.titleDevelopment of Effective Methods for Structural Image Recognition Using the Principles of Data Granulation and Apparatus of Fuzzy Logicuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Daradkeh_IEEE_Access_final_paper.pdf
Розмір:
2.44 MB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: