Публікація: Neural Networks As A Tool For Pattern Recognition of Fasteners
dc.contributor.author | Al-Sharo Yasser Mohammad | |
dc.contributor.author | Abu-Jassar Amer Tahseen | |
dc.contributor.author | Sotnik, S. | |
dc.contributor.author | Lyashenko, V. | |
dc.date.accessioned | 2021-10-09T10:58:40Z | |
dc.date.available | 2021-10-09T10:58:40Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The work is devoted to the study of pattern recognition features of industrial parts in individual fasteners' forms. The main types of neural network architectures and their features are considered. Neural networks are classified into separate categories for ease of perception and analysis. An approach to recognition of hardware products such as fasteners using neural network, which is implemented in Python using Keras machine learning library, is proposed. The main generators are described: for training data, testing, and validation. Codes fragments of corresponding programs for implementation of the proposed approach to pattern recognition of fasteners are presented | uk_UA |
dc.identifier.citation | Al-Sharo Y. M., Abu-Jassar A. T., Sotnik S., Lyashenko V. Neural Networks As A Tool For Pattern Recognition of Fasteners // International Journal of Engineering Trends and Technology. – 2021. –69(10). – pp. 151-160. | uk_UA |
dc.identifier.issn | 2231-5381 | |
dc.identifier.uri | https://openarchive.nure.ua/handle/document/17864 | |
dc.language.iso | en | uk_UA |
dc.publisher | Seventh Sense Research Group | uk_UA |
dc.subject | Neural Networks | uk_UA |
dc.subject | recognition | uk_UA |
dc.title | Neural Networks As A Tool For Pattern Recognition of Fasteners | uk_UA |
dc.type | Article | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- LyashIJETT.pdf
- Розмір:
- 827.31 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: