Публікація: Investigation of the neural networks effectiveness in recognizing moving drones
dc.contributor.author | Зубков, О. В. | |
dc.contributor.author | Шейко, С. О. | |
dc.contributor.author | Олейніков, В. М. | |
dc.contributor.author | Карташов, В. М. | |
dc.date.accessioned | 2022-07-05T21:38:00Z | |
dc.date.available | 2022-07-05T21:38:00Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The aim of the work was to study the recognition efficiency of a moving unmanned aerial vehicle (drone) using various neural networks. Models of fully connected and convolutional neural networks had been created and trained making it possible to classify 12 types of moving objects. Sets of images, such as drones, fragments of tree foliage, grass, clouds and insects had been created to train neural networks. The results of the work are: recommendations for choosing the type and structure of the neural network, estimation of the recognition range for high-resolution images. | uk_UA |
dc.identifier.citation | O. Zubkov, S. Sheiko, V. Oleynikov and V. Kartashov, "Investigation of the neural networks effectiveness in recognizing moving drones," 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), 2021, pp. 119-122, doi: 10.1109/CSIT52700.2021.9648717. | uk_UA |
dc.identifier.isbn | 978-166544257-2 | |
dc.identifier.issn | 27663655 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/9648717 | |
dc.identifier.uri | https://openarchive.nure.ua/handle/document/20658 | |
dc.language.iso | en | uk_UA |
dc.publisher | CSIT | uk_UA |
dc.subject | neural network | uk_UA |
dc.subject | drone | uk_UA |
dc.subject | motion detection | uk_UA |
dc.subject | convolutional network | uk_UA |
dc.subject | video stream | uk_UA |
dc.subject | dataset | uk_UA |
dc.title | Investigation of the neural networks effectiveness in recognizing moving drones | uk_UA |
dc.type | Article | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- Zubkov_CSIT-21_lib.pdf
- Розмір:
- 297.31 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: