Публікація:
Investigation of the neural networks effectiveness in recognizing moving drones

dc.contributor.authorЗубков, О. В.
dc.contributor.authorШейко, С. О.
dc.contributor.authorОлейніков, В. М.
dc.contributor.authorКарташов, В. М.
dc.date.accessioned2022-07-05T21:38:00Z
dc.date.available2022-07-05T21:38:00Z
dc.date.issued2021
dc.description.abstractThe aim of the work was to study the recognition efficiency of a moving unmanned aerial vehicle (drone) using various neural networks. Models of fully connected and convolutional neural networks had been created and trained making it possible to classify 12 types of moving objects. Sets of images, such as drones, fragments of tree foliage, grass, clouds and insects had been created to train neural networks. The results of the work are: recommendations for choosing the type and structure of the neural network, estimation of the recognition range for high-resolution images.uk_UA
dc.identifier.citationO. Zubkov, S. Sheiko, V. Oleynikov and V. Kartashov, "Investigation of the neural networks effectiveness in recognizing moving drones," 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), 2021, pp. 119-122, doi: 10.1109/CSIT52700.2021.9648717.uk_UA
dc.identifier.isbn978-166544257-2
dc.identifier.issn27663655
dc.identifier.urihttps://ieeexplore.ieee.org/document/9648717
dc.identifier.urihttps://openarchive.nure.ua/handle/document/20658
dc.language.isoenuk_UA
dc.publisherCSITuk_UA
dc.subjectneural networkuk_UA
dc.subjectdroneuk_UA
dc.subjectmotion detectionuk_UA
dc.subjectconvolutional networkuk_UA
dc.subjectvideo streamuk_UA
dc.subjectdatasetuk_UA
dc.titleInvestigation of the neural networks effectiveness in recognizing moving dronesuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Zubkov_CSIT-21_lib.pdf
Розмір:
297.31 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: