Публікація:
Адаптивні активаційні функції глибинних нейронних мереж для сегментації тривимірних медичних зображень

Завантаження...
Зображення мініатюри

Дата

Назва журналу

ISSN журналу

Назва тому

Видавець

Дослідницькі проекти

Організаційні одиниці

Випуск журналу

Анотація

Мета роботи – програмна реалізація AdELU, AdPReLU та вбудова їх в U-Net з тривимірними згортковими шарами для вирішення завдання семантичної сегментації на тривимірних медичних даних. Порівняння ефективності застосування адаптивних активаційних функцій для медичних даних в порівнянні зі статичними активаційними функціями. Методи дослідження – аналіз активаційних функцій, що існують, вивчення предметної галузі, вирішення практичних завдань і проведення порівняльного аналізу. Програмно реалізовані U-Net, EdELU та AdPReLU. Проведено дослідний аналіз набору даних, який складається з мультиінституціональних передопераційних МРТ-сканів і фокусується на сегментації внутрішньо неоднорідних пухлин мозку – BraTS20. Навчені нейронні мережі та проведено порівняльний аналіз.

Опис

Ключові слова

багатовимірні медичні зображення, глибинне навчання, комп'ютерний зір, семантична сегментація, штучна нейронна мережа, штучний інтелект, 3D згорткова нейронна мережа

Цитування

Скорік В. А. Адаптивні активаційні функції глибинних нейронних мереж для сегментації тривимірних медичних зображень : пояснювальна записка до атестаційної роботи здобувача вищої освіти на другому (магістерському) рівні, спеціальність 122 Комп’ютерні науки / В. А. Скорік ; М-во освіти і науки України, Харків. нац. ун-т радіоелектроніки. – Харків, 2022. – 95с.

DOI

Схвалення

Рецензія

Доповнено

На які посилаються