Публікація:
Evaluating language models on low-resource pairs

dc.contributor.authorBodenchuk-Pastukhov, Y. V.
dc.date.accessioned2025-05-02T16:02:51Z
dc.date.available2025-05-02T16:02:51Z
dc.date.issued2025
dc.description.abstractThis work is devoted to the evaluation of the Facebook M2M100_418M and Alirezamsh Small100 models for low-resource language pairs. For this study, parallel corpora were selected for the following language pairs: Japanese-Ukrainian, Korean-Ukrainian, Turkish-Ukrainian, Vietnamese-Ukrainian, and Chinese-Ukrainian. The models were assessed based on their performance in translating these language pairs. Evaluation metrics included BLEU and ChrF scores, which measure the quality of the translations. Additionally, differences between the target and translated sentences were analyzed. The study aims to highlight the strengths and weaknesses of each model when working with low-resource languages. A comparative analysis of the results provides insights into the effectiveness of these models. The findings can be useful for future improvements in machine translation for underrepresented language pairs.
dc.identifier.citationBodenchuk-Pastukhov Y. V. Evaluating language models on low-resource pairs / Y. V. Bodenchuk-Pastukhov ; Supervisor Cand. Tech. Sci., Assist. I. O. Kobylin // Радіоелектроніка та молодь у XXI столітті : матеріали 29-го Міжнар. молодіж. форуму, 16–19 квітня 2025 р. – Харків : ХНУРЕ, 2025. – Т. 7. – С. 17–19.
dc.identifier.urihttps://openarchive.nure.ua/handle/document/31019
dc.language.isoen
dc.publisherХНУРЕ
dc.subjectlanguage model
dc.subjectlow-resource pairs
dc.subjectevaluation
dc.titleEvaluating language models on low-resource pairs
dc.typeThesis
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
PiM_2025_T7_ITM_17-19.pdf
Розмір:
351.21 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.55 KB
Формат:
Item-specific license agreed upon to submission
Опис: