Публікація: Dynamic Bayesian Networks for State- and Action-Space Modelling in Reinforcement Learning
dc.contributor.author | Леховицький, Д. І. | |
dc.contributor.author | Ховрат, А. В. | |
dc.date.accessioned | 2018-06-05T12:16:44Z | |
dc.date.available | 2018-06-05T12:16:44Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In recent years Reinforcement Learning has proven its efficiency in solving problems of sequential decision making, formalized with a concept called Markov Decision Process. Though, there is a lot of problems: high computational complexity for multivariate state- and action-space problems, needs to handle missing data and hidden variables, lack of both good model and a sufficient number of episodes for constructing an optimal policy. In this work we suggest Dynamic Bayesian networks (DBNs) as a solution. These models provide an elegant and compact representation of joint state-action space, efficient inference algorithms, which include Monte-Carlo methods and Belief Propagation, and can be used in Dyna-Q Algorithm for integrating real-world and simulated experience. | uk_UA |
dc.identifier.citation | Lekhovitsky D., Khovrat A. Dynamic Bayesian Networks for State- and Action-Space Modelling in Reinforcement Learning / D. Lekhovitsky, A. Khovrat // Радіоелектроніка та молодь у XXI столітті : матеріали 22-го Міжнар. молодіжного форуму, 17–19 апр. 2018 г. – Харків : ХНУРЕ, 2018. – С. 118–119. | uk_UA |
dc.identifier.uri | http://openarchive.nure.ua/handle/document/5806 | |
dc.language.iso | en | uk_UA |
dc.publisher | ХНУРЕ | uk_UA |
dc.subject | Markov Decision Process | uk_UA |
dc.subject | Dynamic Bayesian networks | uk_UA |
dc.subject | Reinforcement Learning | uk_UA |
dc.title | Dynamic Bayesian Networks for State- and Action-Space Modelling in Reinforcement Learning | uk_UA |
dc.type | Thesis | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- Lekhovickiy D. 2018.pdf
- Розмір:
- 60.56 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: