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In recent years Reinforcement Learning has proven its efficiency in solving 

problems of sequential decision making, formalized with a concept called 
Markov Decision Process. Though, there is a lot of problems: high computa-
tional complexity for multivariate state- and action-space problems, needs to 
handle missing data and hidden variables, lack of both good model and a suffi-
cient number of episodes for constructing an optimal policy. In this work we 
suggest Dynamic Bayesian networks (DBNs) as a solution. These models pro-
vide an elegant and compact representation of joint state-action space, efficient 
inference algorithms, which include Monte-Carlo methods and Belief Propaga-
tion, and can be used in Dyna-Q Algorithm for integrating real-world and simu-
lated experience. 

 

Markov Decision Process is defined as a tuple , , ,γPS A , where S  is a 

state space, A  is an action space, P  is a transition model [ , | , ]S R S A′P  of next 

state S ′  and current reward R  given the current state S  and action A , and 

[0; 1]γ ∈  is a discount factor. The goal is to find an optimal policy ( | )A Sπ  

which maximizes an overall expected reward 
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+ + +E�  of following this policy. In Reinforcement 

Learning samples of previous experience are used to do this. 
Bayesian network is a name for both a framework for representation of 

joint distribution of complex multivariate systems and for a core structure of this 

framework. Formally, Bayesian network is a directed acyclic graph ,=B� X E , 

where the set X  is a set of random variables, and every node X  of this graph 
(usually drawn as a circle) is augmented with a conditional probability distribu-

tion of corresponding variable given its parents in the graph B : [ | Par ( )]X XP
B

. 

The main property of Bayesian networks is factorization of joint distribu-
tion [ ]P X  in a form 
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Such factorization allows performing inference (e.g. computing marginal or 
conditional distributions given some evidence, expectation or the most probable 
assignment) for variables of our interest in a very efficient way. Inference algo-
rithms, which include Belief Propagation and Monte-Carlo Markov Chain, 



learning networks’ parameters and structures, as well as other representational 
properties, are described in [1]. 

To incorporate Bayesian networks into the Reinforcement Learning prob-
lem, we need to provide a way of handling temporal structure. Let’s consider a 

multivariate random process ( )t
X ,  {0, 1, ..., }t T∈ , with joint distribution P . 

We can write 
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assuming the Markov property holds: t∀  ( 1) (0: ) ( 1) ( )[ | ] [ | ]t t t t+ +
=P PX X X X . If 

we also assume that t∀  ( 1) ( )[ | ] [ | ]t t+
= ′P PX X X X  (i.e. that our process is 

homogeneous), the only two things needed to represent a process are initial 

probability distribution (0)[ ]P X  and a transition model [ | ]′P X X , both of which 

can be represented as Bayesian networks. Such representation of a random proc-
ess is called a Dynamic Bayesian network, and, in fact, it extends a notion of a 
Markov chain to a multivariate state-space case. 

Moreover, Markov Decision Process itself can be viewed as DBN with 
( )t

X  being all the variables 
t

S , 
t

A  and 
t

R  together, and Bayesian network used 

to represent inter-time-slice and within-time-slice dependencies (which are tran-
sition model P  and policy π ). Besides compactness usage and reduced infer-
ence computational cost, this approach has a lot of advantages which address 
some problems of modern Reinforcement Learning. 

First, the inherent similarity with causal influence diagrams allows Bayes-
ian networks to be used for knowledge representation. This property can be ex-
ploit by incorporating existing understanding of environment into the model by 
engineering priors on its structure and parameters, or by extracting new knowl-
edge from already learnt model. 

Second, there are simple and efficient modifications of classical ML and 
MAP estimation, EM algorithm for learning parameters of a network. Learning 
the structure is a lot more complex problem but some good algorithms exist. 

Third, one can combine real-world and simulation experience by iterating 
between sampling from a real world, using this sample to update the policy, us-
ing this sample to update the model, sampling from the model and now using 
this simulated experience to update the policy. This is a so-called Dyna Archi-
tecture. 
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