Публікація:
Фрагментна обробка зображень на основі штучних нейронних мереж

dc.contributor.authorСакало, Є. С.
dc.date.accessioned2016-10-06T10:21:32Z
dc.date.available2016-10-06T10:21:32Z
dc.date.issued2011
dc.description.abstractДисертацію присвячено створенню та дослідженню методів обробки зображень (компресії, сегментації, фільтрації) на основі використання спеціалізованих штучних нейронних мереж. Розглянуто традиційні методи обробки зображень, визначені їх основні недоліки та переваги, показано перспективність використання нейромережних методів. Вперше запропоновано конкурентну нейронну мережу та метод її самонавчання, що в якості вхідного сигналу використовують фрагменти зображень у матричній формі замість векторів-образів, що забезпечує збереження міжпіксельних кореляційних зв’язків та змістовної структури фрагменту. Ця мережа є простою у чисельній реалізації та має фільтруючі та слідкуючи властивості: ця ж мережа покладена в основу гібридної системи адаптивного розпізнавання фрагментів зображень, що утворюється послідовним з’єднанням матричної самоорганізувальної карти та матричної мережі векторного квантування. Також вперше запропоновано спеціалізовану нейронну мережу для аналізу незалежних компонент та метод її навчання у реальному часі, що має підвищену швидкодію та дозволяє одночасно вирішувати як задачі стиснення, так і власне задачі сліпої ідентифікації та сепарації сигналів. Удосконалено методи навчання для вирішення задач стиснення зображень на основі аналізу головних компонент та головних підпросторів, що мають підвищену швидкодію. Також удосконалені методи самонавчання самоорганізувальних карт Т. Кохонена на основі калманівської фільт-рації сигналів та використання робастних критеріїв та спеціалізованої мережі сліпої сепарації. The thesis is devoted to developing and investigation of image processing methods (compression, segmentation, filtration) based on using specialized artificial neural net-works. Conventional image processing methods are considered, their main disadvantages and advantages are analyzed, the application prospects of neural approaches are shown. For the first time a competitive neural network and its selflearning method are proposed, where frames of images in a matrix form are used as input signals instead of vector pat- 19 terns. This approach provides conservation of interpixel correlation and contextual struc-ture of a frame. This network is simple in a computational realization and possesses addi-tive filtering and tracking properties. This network forms a base for a hybrid system of adaptive frame image recognition that is formed by series connection of a matrix self-organizing map and a matrix vector quantization network. Also, for the first time, a specialized neural network for independent component analysis and its real-time learning method are proposed. This system permits simultane-ously to solve both the tasks of compression and blind signal identification and separation and provides high speed information processing. The learning methods for solving the tasks of image compression using analysis of principal components and principal sub-spaces with high speed performance have got further development. Moreover, selflearning methods for T. Kohonen’s self-organizing maps using Kalman’s signal filtration, robust criteria and a specialized blind separation network are modified.uk_UA
dc.identifier.citationСакало Є. С. Фрагментна обробка зображень на основі штучних нейронних мереж : автореф. дис. ... канд. техн. наук : 05.13.23 – "Системи та засоби штучного інтелекту" / Є. С. Сакало ; Харк. нац. ун-т радіоелектроніки. – Х., 2011. – 22 с.uk_UA
dc.identifier.urihttp://openarchive.nure.ua/handle/document/3226
dc.language.isoukuk_UA
dc.publisherХарк. нац. ун-т радіоелектронікиuk_UA
dc.subjectобробка зображеньuk_UA
dc.subjectштучні нейронні мережіuk_UA
dc.subjectнавчання та самонавчанняuk_UA
dc.subjectкомпресіяuk_UA
dc.subjectсегментаціяuk_UA
dc.subjectфільтраціяuk_UA
dc.subjectimage processinguk_UA
dc.subjectartificial neural networksuk_UA
dc.subjectcompressionuk_UA
dc.subjectsegmentationuk_UA
dc.titleФрагментна обробка зображень на основі штучних нейронних мережuk_UA
dc.typeOtheruk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
SakaloES.pdf
Розмір:
866.17 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис:

Колекції