Публікація:
Sobel Algorithm for Processing Medical Images on FPGA

dc.contributor.authorЧумак, В. С.
dc.contributor.authorDeryuga, I.
dc.date.accessioned2023-12-19T21:18:50Z
dc.date.available2023-12-19T21:18:50Z
dc.date.issued2023
dc.description.abstractFPGAs are gaining interest in microchip manufacturing due to their high computational power and parallelization capabilities. This makes them suitable for compact, integrated devices handling diverse computational tasks, particularly in the medical field. The Sobel operator is a simple method for determining image contours. It utilizes 2D convolution with kernel matrices to approximate brightness derivatives along horizontal and vertical axes. FPGA implementation allows for easy parallelization. However, as a standalone algorithm, it is not ideal for medical image processing due to limited accuracy and noise sensitivity. Instead, it can be used as an additional filter to enhance edges in conjunction with other algorithms, improving diagnostic detail. FPGA implementation enables rapid edge detection, making it suitable for integration into medical image recognition systems.
dc.identifier.citationChumak V. Sobel Algorithm for Processing Medical Images on FPGA / V. Chumak, I. Deryuga // V International Scientific and Practical Conference Theoretical and Applied Aspects of Device Development on Microcontrollers and FPGAs (MC&FPGA-2023), Kharkiv, Ukraine, 2023. - pp. 40-41.
dc.identifier.urihttps://openarchive.nure.ua/handle/document/25114
dc.language.isoen
dc.publisherMC&FPGA
dc.subjectimage processing
dc.subjectmedical images
dc.subjectoptimization
dc.subjectsobel operator
dc.subjectparallelization
dc.titleSobel Algorithm for Processing Medical Images on FPGA
dc.typeThesis
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
10-35598-mcfpga-2023-013.pdf
Розмір:
598.87 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.64 KB
Формат:
Item-specific license agreed upon to submission
Опис: