Публікація: Detection of anomalous actions in the network based on machine learning
dc.contributor.author | Kulia, V. | |
dc.contributor.author | Petrenko, O. | |
dc.date.accessioned | 2025-02-25T17:07:45Z | |
dc.date.available | 2025-02-25T17:07:45Z | |
dc.date.issued | 2024 | |
dc.description.abstract | As cyber threats become more sophisticated, the need for effective anomaly detection systems has never been more critical. The usage of machine learning techniques to detect anomalous behavior in network traffic in comparison with traditional detection methods has been researched in this paper. Key challenges, benefits, and real-world applications of machine learning in this area were discussed. | |
dc.identifier.citation | Kulia V. Detection of anomalous actions in the network based on machine learning / V. Kulia, O. Petrenko // Computer and information systems and technologies : Seventh International Scientific and Technical Conference, 2024. – Kharkiv : NURE, 2024. – p. 40-41. | |
dc.identifier.issn | 2710-463X | |
dc.identifier.uri | https://openarchive.nure.ua/handle/document/29847 | |
dc.language.iso | en | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Anomaly Detection | |
dc.subject | Machine Learning | |
dc.subject | Network Security | |
dc.subject | Cybersecurity | |
dc.subject | Intrusion Detection Systems (IDS) | |
dc.subject | Semi- Supervised Learning | |
dc.title | Detection of anomalous actions in the network based on machine learning | |
dc.type | Thesis | |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- Kulia _Petrenko.pdf
- Розмір:
- 130.23 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.55 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: