Публікація:
Detection of anomalous actions in the network based on machine learning

dc.contributor.authorKulia, V.
dc.contributor.authorPetrenko, O.
dc.date.accessioned2025-02-25T17:07:45Z
dc.date.available2025-02-25T17:07:45Z
dc.date.issued2024
dc.description.abstractAs cyber threats become more sophisticated, the need for effective anomaly detection systems has never been more critical. The usage of machine learning techniques to detect anomalous behavior in network traffic in comparison with traditional detection methods has been researched in this paper. Key challenges, benefits, and real-world applications of machine learning in this area were discussed.
dc.identifier.citationKulia V. Detection of anomalous actions in the network based on machine learning / V. Kulia, O. Petrenko // Computer and information systems and technologies : Seventh International Scientific and Technical Conference, 2024. – Kharkiv : NURE, 2024. – p. 40-41.
dc.identifier.issn2710-463X
dc.identifier.urihttps://openarchive.nure.ua/handle/document/29847
dc.language.isoen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAnomaly Detection
dc.subjectMachine Learning
dc.subjectNetwork Security
dc.subjectCybersecurity
dc.subjectIntrusion Detection Systems (IDS)
dc.subjectSemi- Supervised Learning
dc.titleDetection of anomalous actions in the network based on machine learning
dc.typeThesis
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Kulia _Petrenko.pdf
Розмір:
130.23 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.55 KB
Формат:
Item-specific license agreed upon to submission
Опис: