Публікація:
Time Series Classification Based on Visualization of Recurrence Plots

dc.contributor.authorКіріченко, Л. О.
dc.contributor.authorЗінченко, П. П.
dc.date.accessioned2021-06-10T20:16:52Z
dc.date.available2021-06-10T20:16:52Z
dc.date.issued2021
dc.description.abstractOrdered data sets such as time series are found in almost all areas of human activity from cardiograms and to cyberattacks. Classification of time series is one of the most difficult tasks in data mining. In the article, a new method of time series classification based on the construction of recurrence plots is considered. The time series is ransformed into a matrix, which characterizes the recurrence of the time series states, and the matrix is presented as a black-and-white image. Further, the convolutional neural network is used to classify the image. The application of the method is demonstrated by examples of simulated time series. A comparative analysis of the classification of noisy time series is carried out. The dependences of the classification accuracy on the noise level of time series are obtained. The results showed that the considered method has a high enough classification accuracy at high noise levels.uk_UA
dc.identifier.citationKirichenko L. Time Series Classification Based on Visualization of Recurrence Plots / L. Kirichenko, P. Zinchenko // Communications in Computer and Information Science. – 2021. – P. 101–108.uk_UA
dc.identifier.urihttps://openarchive.nure.ua/handle/document/16445
dc.language.isoenuk_UA
dc.publisherCCISuk_UA
dc.subjectTime seriesuk_UA
dc.subjectnoiseuk_UA
dc.subjectclassificationuk_UA
dc.subjectrecurrence plotuk_UA
dc.subjectconvolutional neural networks (CNN)uk_UA
dc.titleTime Series Classification Based on Visualization of Recurrence Plotsuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Zinch.pdf
Розмір:
815.38 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: