Публікація: Named Entity Recognition Problem for Long Entities in English Texts
dc.contributor.author | Shatalov, O. | |
dc.contributor.author | Ryabova, N. | |
dc.date.accessioned | 2022-01-17T14:20:14Z | |
dc.date.available | 2022-01-17T14:20:14Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This paper is related to the problem of natural language processing (NLP), namely the named entity recognition (NER). This paper reveals the features of named entities recognition in English texts using deep learning (DL). The peculiarity of the study was the rather long length of the presented named entities: many of them could include a rather large number of words. The main problem was the amount of text that had to be recognized as a single entity. The results of the research are described here show the effectiveness of using deep neural network architectures for the task of recognizing long named entities in texts in English. | uk_UA |
dc.identifier.citation | O. Shatalov and N. Ryabova, "Named Entity Recognition Problem for Long Entities in English Texts," 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), 2021, pp. 76-79, doi: 10.1109/CSIT52700.2021.9648768. | uk_UA |
dc.identifier.isbn | Electronic ISBN:978-1-6654-4257-2 Print on Demand(PoD) ISBN:978-1-6654-4258-9 | |
dc.identifier.issn | Electronic ISSN: 2766-3639 Print on Demand(PoD) ISSN: 2766-3655 | |
dc.identifier.other | DOI: 10.1109/CSIT52700.2021.9648768 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/9648768 | |
dc.identifier.uri | https://openarchive.nure.ua/handle/document/19193 | |
dc.language.iso | en | uk_UA |
dc.relation.ispartofseries | Volume 1;pp. 76-79 | |
dc.subject | Natural Language Processing | uk_UA |
dc.subject | Named Entity Recognition | uk_UA |
dc.title | Named Entity Recognition Problem for Long Entities in English Texts | uk_UA |
dc.type | Conference proceedings | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- CSIT_2021_paper.pdf
- Розмір:
- 409.68 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: