Публікація:
Kernel principal component analysis in data stream mining tasks

dc.contributor.authorBodyanskiy, Ye. V.
dc.contributor.authorDeineko, A. O.
dc.contributor.authorEze, F. M.
dc.contributor.authorShalamov, M. O.
dc.date.accessioned2016-11-09T09:32:50Z
dc.date.available2016-11-09T09:32:50Z
dc.date.issued2016
dc.description.abstractCurrently, self-learning systems of computational intelligence [1, 2] and, above all , artificial neural networks (ANN ), that tune their parameters without a teacher on the basis of the self-learning paradigm [3], are widely used in solving various problems of Data Mining, Exploratory Data Analysis etc. Among these tasks, most frequently encountered in the Text Mining, Web Mining, Medical Data Mining, it be can mentioned the problem of compression of large data sets, for whose solution principal component analysis (PCA) is widely used, which consists in the orthogonal projection of input data vectors from the original n-dimensional space in the m- dimensional space of reduced dimensionalityuk_UA
dc.identifier.urihttp://openarchive.nure.ua/handle/document/3434
dc.language.isoenuk_UA
dc.subjectdata streamuk_UA
dc.subjectself-learning paradigmuk_UA
dc.titleKernel principal component analysis in data stream mining tasksuk_UA
dc.typeArticleuk_UA
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
KERNEL PRINCIPAL.doc
Розмір:
143 KB
Формат:
Microsoft Word
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.42 KB
Формат:
Item-specific license agreed upon to submission
Опис: