Публікація: Enhanced multidimensional neo-fuzzy classification system and its learning for the video classification task
dc.contributor.author | Bodyanskiy, Ye. V. | |
dc.contributor.author | Chala, O. S. | |
dc.date.accessioned | 2025-06-15T19:16:52Z | |
dc.date.available | 2025-06-15T19:16:52Z | |
dc.date.issued | 2024 | |
dc.description.abstract | A novel hybrid neo-fuzzy system for video classification, which includes multidimensional neo-fuzzy components with adjustable synaptic weights and kernel membership functions, is proposed. This system combines the strengths of extended neo-fuzzy neurons (ENFN) and neo-fuzzy units (NFU) with nonlinear activation functions. By integrating extended nonlinear synapses (ENS) and leveraging the neuro-fuzzy Takagi-Sugeno-Kang inference system, proposed architecture enhances the approximating capabilities of traditional models. This allows the system to effectively address the task of image recognition, including real-time video stream classification, while maintaining a high level of accuracy, as demonstrated by computational experiment. | |
dc.identifier.citation | Bodyanskiy Ye. V. Enhanced multidimensional neo-fuzzy classification system and its learning for the video classification task / Ye. V. Bodyanskiy, O. S. Chala // АСУ та прилади автоматики : всеукр. міжвід. наук.-техн. зб. – Харків : ХНУРЕ, 2024. – Вип. 181. – С. 42–50. – DOI: 10.30837/0135-1710.2024.181.042. | |
dc.identifier.doi | https://doi.org/10.30837/0135-1710.2024.181.042 | |
dc.identifier.uri | https://openarchive.nure.ua/handle/document/31627 | |
dc.language.iso | en_US | |
dc.publisher | ХНУРЕ | |
dc.subject | video classification | |
dc.subject | neo-fuzzy components | |
dc.title | Enhanced multidimensional neo-fuzzy classification system and its learning for the video classification task | |
dc.type | Article | |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Завантаження...
- Назва:
- ASU_181-42-50.pdf
- Розмір:
- 705.21 KB
- Формат:
- Adobe Portable Document Format
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 10.74 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: