Публікація:
Automatic sign language translation system using neural network technologies and 3d animation

dc.contributor.authorShovkovyi, Y.
dc.contributor.authorGrynyova, O.
dc.contributor.authorUdovenko, S.
dc.contributor.authorChala , L.
dc.date.accessioned2024-01-05T18:11:25Z
dc.date.available2024-01-05T18:11:25Z
dc.date.issued2023
dc.description.abstractУпровадження програмних засобів автоматичного сурдоперекладу в процес соціальної інклюзії людей з вадами слуху є важливим завданням. Соціальна інклюзія для осіб із вадами слуху є нагальною проблемою, яку необхідно вирішувати з огляду на розвиток IT-технологій та законодавчі ініціативи, що забезпечують права людей з інвалідністю та їхні рівні можливості. Сказане обґрунтовує актуальність дослідження асистивних технологій у контексті програмних засобів, таких як процес соціального залучення людей з важкими порушеннями слуху в суспільство. Предметом дослідження є методи автоматизованого сурдоперекладу із застосуванням інтелектуальних технологій. Мета роботи – розроблення та дослідження методів автоматизації сурдоперекладу для поліпшення якості життя людей з вадами слуху відповідно до «Цілей сталого розвитку України» (в частині «Скорочення нерівності»). Основними завданнями дослідження є розроблення й тестування методів перетворення жестової мови в текст, перетворення тексту в жестову мову, а також автоматизації перекладу з однієї жестової мови іншою жестовою мовою із застосуванням сучасних інтелектуальних технологій. Для розв’язання цих завдань використовувались методи нейромережного моделювання та 3D-анімації. Унаслідок дослідження здобуто такі результати: виявлено основні проблеми й завдання соціальної інклюзії для людей з вадами слуху; здійснено порівняльний аналіз сучасних методів і програмних платформ автоматичного сурдоперекладу; запропоновано й досліджено систему, що об’єднує метод SL-to-Text; метод Text-to-SL з використанням 3D-анімації для генерації концептів жестової мови; метод генерації 3D-анімованого жесту з відеозаписів; метод реалізації технології Sign Language1 to Sign Language2. Для розпізнавання жестів застосовано модель згорткової нейронної мережі, що навчається за допомогою імпортованих і згенерованих системою датасетів відеожестів. Навчена модель має високу точність розпізнавання (98,52 %). Створення 3D-моделі для відображення жесту на екран і його оброблення відбувалися у середовищі Unity 3D. Структура проєкту, виконавчих і допоміжних файлів, що застосовуються для побудови 3D-анімації для генерації концептів жестової мови містить: файли обробників подій; результати відображення, що мають інформацію про положення відслідкованих точок тіла; файли, що зберігають характеристики матерій, які були додані до тих чи інших точок відображення тіла. Висновки: запропоновані методи автоматизованого перекладу мають практичну значущість, що підтверджують демоверсії програмних застосунків Sign Language to Text і Text to Sign Language. Перспективним напрямом подальших досліджень з окресленої теми є вдосконалення методів SL1-to-SL2, створення відкритих датасетів відеожестів, залучення науковців і розробників для наповнення словників концептами різних жестових мов.
dc.identifier.citationAutomatic sign language translation system using neural network technologies and 3d animation / Y. Shovkovyi, O. Grynyova, S. Udovenko, L. Chala // Innovative technologies and scientific solutions for industries. – 2023. – № 4 (26). – P. 108-121.
dc.identifier.issn2524-2296
dc.identifier.urihttps://openarchive.nure.ua/handle/document/25238
dc.language.isoen
dc.relation.ispartofseries4; 26
dc.subjectавтоматизація жестового мовлення
dc.subjectанімований персонаж
dc.subjectвідслідковування положення тіла
dc.subjectлюди з вадами слуху
dc.subjectрозпізнавання жестів
dc.subjectсурдопереклад
dc.titleAutomatic sign language translation system using neural network technologies and 3d animation
dc.title.alternativeСистема автоматичного сурдоперекладу з використанням нейромережних технологій та 3D-анімації
dc.typeArticle
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
1.pdf
Розмір:
862.51 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.64 KB
Формат:
Item-specific license agreed upon to submission
Опис: