Публікація:
Applying gradient boosting as a stac king algorithm over bottleneck features to achieve high image classification accuracy

dc.contributor.authorGolian, N.
dc.contributor.authorAfanasieva, I.
dc.contributor.authorGolian, V.
dc.contributor.authorPanchenko, D.
dc.date.accessioned2023-06-10T17:08:58Z
dc.date.available2023-06-10T17:08:58Z
dc.date.issued2021
dc.description.abstractWith the development of the Internet, making many images available online for analysis, object recognition software is gaining more and more attention from researchers. Factors are driving the development of computer vision today: mobile devices with built-in cameras, the availability of computing power, the availability of computer vision and analysis equipment, and new algorithms such as convolutional neural networks that take advantage of the power of hardware and software. The work is generally devoted to the consideration of the problem of image classification using convolutional neural networks. And in particular, one of the most popular and applied in practice machine learning algorithms − gradient boosting applied to the bottlenecks of deep convolutional neural networks. It also discusses three scenarios for applying gradient boosting to bottlenecks extracted from the last convolutional layer of the neural network. The essence of boosting, as well as of other ensembles of algorithms, is to collect one strong from several weak models. The general idea of boosting algorithms is to consistently apply predictors so that each subsequent model minimizes the error of the previous one. Gradient boosting works by sequentially adding new models to past models so that errors made by previous predictors are corrected.
dc.identifier.citationApplying gradient boosting as a stac king algorithm over bottleneck features to achieve high image classification accuracy / N. Golian, I. Afanasieva, V. Golian, D. Panchenko // Бионика интеллекта : научно-технический журнал. – 2021. – № (96). – С. 29–34.
dc.identifier.urihttps://openarchive.nure.ua/handle/document/23310
dc.language.isoen
dc.publisherХНУРЭ
dc.subjectartificial intelligence
dc.subjectcomputer vision
dc.subjectgradient boosting
dc.subjectimage
dc.subjectmachine learning
dc.subjectneural network
dc.titleApplying gradient boosting as a stac king algorithm over bottleneck features to achieve high image classification accuracy
dc.typeArticle
dspace.entity.typePublication

Файли

Оригінальний пакет
Зараз показано 1 - 1 з 1
Завантаження...
Зображення мініатюри
Назва:
Bionika_2021_PI_29-34.pdf
Розмір:
358.58 KB
Формат:
Adobe Portable Document Format
Ліцензійний пакет
Зараз показано 1 - 1 з 1
Немає доступних мініатюр
Назва:
license.txt
Розмір:
9.64 KB
Формат:
Item-specific license agreed upon to submission
Опис: