Публікація: Classification of time realizations using machine learning recognition of recurrence plots
dc.contributor.author | Кіріченко, Л. О. | |
dc.contributor.author | Радівілова, Т. А. | |
dc.contributor.author | Зінченко, П. П. | |
dc.date.accessioned | 2021-06-10T20:17:13Z | |
dc.date.available | 2021-06-10T20:17:13Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In the article,the machine learning classification of time realizations using the recurrence plot visualization is considered. Every time realization is converted intoa matrix of recurrence states and it is presented as a black-and-white image. The resulting images of realizations are classified using deep neural networks. A deep residual neural network is used as an image classifier. The binary classifi-cation of EEG realizationsis carried out. The result of the binary classification is the detection of an epileptic seizure. The data for the experiment are records of brain activity containing 178 values. The results of the studyshow that the consi-dered method has a high classification accuracy. The proposed classification ap-proach can be readily used in practice. | uk_UA |
dc.identifier.citation | Kirichenko L. Classification of time realizations using machine learning recognition of recurrence plots / L. Kirichenko, P. Zinchenko, T. Radivilova // Advances in Intelligent Systems and Computing. – 2021. – P. 687–696. | uk_UA |
dc.identifier.uri | https://openarchive.nure.ua/handle/document/16446 | |
dc.language.iso | en | uk_UA |
dc.publisher | AISC | uk_UA |
dc.subject | machine learning classification | uk_UA |
dc.subject | time series classification | uk_UA |
dc.subject | recurrence plot | uk_UA |
dc.subject | EEG realizations | uk_UA |
dc.subject | deep residual networks | uk_UA |
dc.title | Classification of time realizations using machine learning recognition of recurrence plots | uk_UA |
dc.type | Article | uk_UA |
dspace.entity.type | Publication |
Файли
Оригінальний пакет
1 - 1 з 1
Ліцензійний пакет
1 - 1 з 1
Немає доступних мініатюр
- Назва:
- license.txt
- Розмір:
- 9.42 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: