Перегляд за автором "Neofitnyy, M. V."
Зараз показано 1 - 3 з 3
Результатів на сторінку
Варіанти сортування
Публікація 1,55 mkm fiber laser with electronic controlled mode-locking(CAOL, 2019) Hnatenko, O. S.; Neofitnyy, M. V.; Machekhin, Yu. P.; Zarytskyi, V. I.; Zhdanova, Yu. V.A projection of an erbium-doped active-fiber laser is offered in this research paper. Mode synchronization method - the nonlinear evolution of mode polarization, is used to ensure the duration of femtosecond pulses. The basis of this method uses liquid crystal controllers polarization, which is controlled by an electrical signal. The proposed scheme and method for obtaining ultrashort pulses are free from the unstable operation of the laser.Публікація Laser system for recording optics(CAOL, 2019) Semenets, V. V.; Neofitnyy, M. V.; Machekhin, Yu. P.; Hnatenko, O. S.; Zarytskyi, V. I.; Gulak, S. V.The development of a modern laser system for recording optics is presented in this research paper. Studying optical components for designing this system by various methods, by calculated methods and by a method of using modern modeling package Zemax, was conducted. The results of the calculations and simulation, which led to the preliminary design of the laser system of optics registration, coincide.Публікація Topological Model of Laser Emission Parameters Research(CAOL, 2019) Kurskoy, Yu. S.; Hnatenko, O. S.; Machekhin, Yu. P.; Neofitnyy, M. V.The research paper presents a model for studying both the parameters and dynamics of laser light as a nonlinear dynamic system. The model provides for the measurement of the values of physical quantities by non-linear metrology methods and the analysis of the research findings with topological tools. The model is based on the assumption of interval values of the measured values and the possibility of changing the stationary dynamics into the random one. The model contains an experiment scheme and a procedure for evaluating measurement results. The peculiarity of the model lies in its systemic approach and suitability for measuring and researching stationary and chaotic modes. The model provides for the measurement of the emission parameter values intervals in various modes, of their stability values and time series prediction. Classification of the system dynamics is performed using the fractal dimension. The model can be used both to ensure the stability of the laser light parameters, and to obtain and control random emission.