Перегляд за автором "Gerasimov, V."
Зараз показано 1 - 2 з 2
Результатів на сторінку
Варіанти сортування
Публікація Microwave Heating of Low-Temperature Plasma and Its Application(IntechOpen, 2021) Frolova, T. I.; Churyumov, G. I.; Odarenko, E. N.; Gerasimov, V.; Buts, V.In this chapter, the results of theoretical and experimental studies of the interaction of an electromagnetic field with a plasma (fundamental interaction of the wave-particle type) both in the regime of standing waves (in the case of a resonator) and in the case of traveling waves in a waveguide are presented. The results of computer modeling the distribution of a regular electromagnetic field for various designs of electrodynamic structures are considered. The most attractive designs of electrodynamic structures for practical application are determined. A brief review and analysis of some mechanisms of stochastic plasma heating are given as well as the conditions for the formation of dynamic chaos in such structures are determined. Comparison analysis of microwave plasma heating in a regular electromagnetic field (in a regime with dynamical chaos) with plasma heating by random fields is considered. It is shown, that stochastic heating of plasma is much more efficient in comparison with other mechanisms of plasma heating (including fundamental interaction of the wave-wave type). The results obtained in this work can be used to increase the efficiency of plasma heating as well as to develop promising new sources of electromagnetic radiation in the microwave and optical ranges.Публікація The Advanced Designs of Magnetrons with Improvement Output Characteristics(2016) Churyumov, G. I.; Gerasimov, V.; Frolova, T. I.; Gritsunov, A. V.; Ekezli, A.This paper presents the experimental and theoretical investigations of the two constructions of the magnetrons: the low-voltage X and Ku ranges magnetrons with two RF outputs of energy and the cold secondary emission cathode magnetron with ancillary side cold cathode. It is shown that the electronic frequency tuning in the magnetrons with two RF output can be obtained in the range more than 200 MHz. The electronic control of the frequency tuning from pulse to pulse is performed by the microwave switch on basis the p-i-n diodes. By using the computer modeling, the features of secondary emission multiplication mechanism of the electron beam at the front and droop of anode voltage pulses are shown. The prospects for developing such magnetrons and expansion of areas of their application are discussed.