Публікація:
Machine Learning in Classification Time Series with Fractal Properties

Завантаження...
Зображення мініатюри

Дата

Назва журналу

ISSN журналу

Назва тому

Видавець

Дослідницькі проекти

Організаційні одиниці

Випуск журналу

Анотація

The article presents a novel method of fractal time series classification by meta-algorithms based on decision trees. The classification objects are fractal time series. For modeling, binomial stochastic cascade processes are chosen. Each class that was singled out unites model time series with the same fractal properties. Numerical experiments demonstrate that the best results are obtained by the random forest method with regression trees. A comparative analysis of the classification approaches, based on the random forest method, and traditional estimation of self-similarity degree are performed. The results show the advantage of machine learning methods over traditional time series evaluation. The results were used for detecting denial-of-service (DDoS) attacks and demonstrated a high probability of detection.

Опис

Цитування

Kirichenko L. Machine Learning in Classification Time Series with Fractal Properties / L. Kirichenko, V. Bulakh, T. Radivilova // Data. – 2019. – vol.4(1) 5. – P. 1–13.

DOI

Схвалення

Рецензія

Доповнено

На які посилаються