Please use this identifier to cite or link to this item: http://openarchive.nure.ua/handle/document/7851
Title: Analysis of possibilities to use neural network for remote control of electronic devices
Other Titles: Аналіз можливостей використання нейронних мереж для дистанційного керування електронними апаратами
Анализ возможностей применения нейронных сетей для реализации дистанционного управления электронными аппаратами
Authors: Галкін, П. В.
Голіков, М. О.
Keywords: remote control
neural network
hardware interfaces to communicate
wireless communications
Issue Date: 2018
Publisher: Technology audit and production reserves
Citation: Holikov, M., & Galkin, P. (2018). Analysis of possibilities to use neural network for remote control of electronic devices. Technology Audit And Production Reserves, 6(2(44)), 42-49. doi:http://dx.doi.org/10.15587/2312-8372.2018.149539
Series/Report no.: Vol 6;No 2(44) (2018)
Том 6;№ 2(44) (2018)
Abstract: The object of research in the work is the systems of remote control of electronic devices. There are wired and wireless means of implementing a remote communication channel between the slave and control devices. Analysis of existing means of creating a communication channel, found a low value of the ratio of system flexibility and data transfer rate within the created network. One of the reasons for the low ratio is the use of modules as part of a system with a high minimum operating time. Such modules are modules for filtering and decoding the received signal at the receiver side, encoding and modulation at the transmitter side. Replacing these modules with one with a significantly lower time spent will significantly improve the value of the ratio of system flexibility and data transfer rate. The ability to create a module that will have the necessary properties of time spent on work, provides a neural network. The model of a remote control system obtained during the study has several advantages, in particular, the presence of a neural network, makes it possible to reduce the time spent and to improve the accuracy of the system during the entire system operation time. This is achieved thanks to the ability of the neural network to self-learning without human intervention and its ability to analyze any input signals with different background noise values. These properties allow the replacement of elements that do not allow to increase the rate of exchange for elements of the neural network that will perform the same functions with greater speed, reliability and accuracy. The data obtained during the work proves the expediency of integrating the elements of the neural network into the remote control systems of electronic devices. Also, possible places for the integration of a neural network into the remote control system of electronic equipment have been proposed, which will improve the stability, accuracy, speed of the system.
Description: Література: 1. Ящук А. Системи безпровідних технологій передачі даних // Міністерство освіти та науки України. 2013. URL: http://lutskntu.com.ua/sites/default/files/ 4_yashchuk_sistemi_bezprov_tehnologiy_0.pdf 2. Галкін П. В., Голіков М. О. Безконтактній метод контролю об’єктів. 2018 // 22 международный молодежный форум «Радиоэлектроника и молодеж в 21 веке». Харків, 2018. С. 56–57. 3. Tengfei Z., Qinxiao L., Fumin M. Remote control system of smart appliances based on wireless sensor network // 25th Chinese Control and Decision Conference (CCDC). 2013. Р. 3704–3709. doi: http://doi.org/10.1109/ccdc.2013.6561592 4. Improving wireless devices identification using gray relationship classifier to enhance wireless network security / Yun L. et. al. // IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2018. Р. 421–425. doi: http://doi.org/10.1109/infcomw.2018.8406960 5. Метод виявлення вторгнень в мобільні радіомережі на основі нейронних мереж / Сальник С. В., Сальник В. В., Симоненко О. А., Сова О. Я. // Наука і техніка Повітряних Сил Збройних Сил України. 2015. No 4. Р. 82–90. 6. Shubham S., Achyut H. WiFi-aware as a connectivity solution for IoT pairing IoT with WiFi aware technology: Enabling new proximity-based services // International Conference on Internet of Things and Applications (IOTA). 2016. Issue 2. Р. 137–142. doi: http://doi.org/10.1109/iota.2016.7562710 7. Investigation on the performance of 10 Gb/s on uplink space optical communication system based on MSK scheme / Mi L. et. al. // 4th International Conference on Optical Communications and Networks (ICOCN). 2015. Р. 1–3. doi: http://doi.org/10.1109/icocn.2015.7203690 8. Liu Y. Wireless Information and Power Transfer for Multirelay-Assisted Cooperative Communication // IEEE Communications Letters. 2016. Vol. 20, Issue 4. P. 784–787. doi: http://doi.org/10.1109/lcomm.2016.2535114 9. Wireless Powered Communication Networks Assisted by Backscatter Communication / Lyu B. et. al. // IEEE Access. 2017. Vol. 5. P. 7254–7262. doi: http://doi.org/10.1109/access.2017.2677521 10. Обработка сигналов в радиоэлектронных системах дистанционного мониторинга атмосферы / Карташов В. М., Олейников В. Н., Тихонов В. А. и др. Харьков: СМИТ, 2014. 213 с. 11. Юревич Е. Теория автоматического управления. СПб.: БХВ-Петербург, 2016. 4-е изд., перераб. и доп. 560 с. 12. Remotized Control of Power Electronic Devices Exploiting a Plastic Optical Fiber Photonic Bus / Anantaram V. et. al. // 20th International Conference on Transparent Optical Networks (ICTON). 2018. Р. 1–4. doi: http://doi.org/10.1109/icton.2018.8473992 13. Switch automation of smart devices between test beds using distributed control system / Pavan K. Y. V. et. al. // International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). 2014. Р. 1330–1333. doi: http://doi.org/10.1109/iccicct.2014.6993168 14. Sabri G., Cihan K. Remote controllable electronic signboard // International Conference on Computer Science and Engineering (UBMK). 2017. Р. 78–83. doi: http://doi.org/10.1109/ubmk.2017.8093561 15. The design and realization of a comprehensive SPI interface controller / Jianlong Z. et. al. // Second International Conference on Mechanic Automation and Control Engineering. 2011. P. 4529–4532. doi: http://doi.org/10.1109/mace.2011.5988014 16. A design of ultra-low power I2C synchronous slave controller with interface voltage level independency in 180 nm CMOS technology / Ali I. et. al. // International SoC Design Conference (ISOCC). 2017. P. 262–263. doi: http://doi.org/10.1109/isocc.2017.8368885 17. Chandwani N., Jain A., Vyavahare P. D. Throughput comparison for Cognitive Radio network under various conditions of primary user and channel noise signals // Radio and Antenna Days of the Indian Ocean (RADIO). 2015. Р. 1–2. doi: http://doi.org/10.1109/radio.2015.7323379 18. Pinku R., Anand S., Ravi K. Experimental investigation on probe feed equilateral triangular dielectric resonator antenna for 5.8 GHz ISM band (IEEE 802.11) // Progress In Electromagnetics Research Symposium – Spring (PIERS). 2018. Р. 2195– 2199. doi: http://doi.org/10.1109/piers.2017.8262115 19. Suh D., Ko H., Pack S. Efficiency Analysis of WiFi Offloading Techniques. IEEE Transactions on Vehicular Technology // IEEE Transactions on Vehicular Technology. 2015. Vol. 65, Issue 5. Р. 3913–3917. doi: http://doi.org/10.1109/tvt.2015.2437325 20. Khan W. M., Zualkernan I. A. SensePods: A ZigBee-Based Tangible Smart Home Interface // IEEE Transactions on Consumer Electronics. 2018. Vol. 64, Issue 2. Р. 145–152. doi: http://doi.org/10.1109/tce.2018.2844729 21. Galkin P. V. Analysis of energy consumption nodes wireless sensor networks // ScienceRise. 2014. Issue 2 (2). P. 55–61. doi: http://doi.org/10.15587/2313-8416.2014.27246 22. Galkin P. V. An algorithm for operating and optimizing information flows in wireless sensor networks // Eastern-European Journal of Enterprise Technologies. 2014. Vol. 6, Issue 3 (72). P. 53–63. doi: http://doi.org/10.15587/1729-4061.2014.30419 23. Haykin S. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1998. 842 p. 24. Yonghua Y., Lan W., Erol G. Multi-layer neural networks for quality of service oriented server-state classification in cloud servers // International Joint Conference on Neural Networks (IJCNN). 2017. Issue 1. Р. 1623–1627. doi: http://doi.org/10.1109/ijcnn.2017.7966045 25. Yasuaki K., Hitoshi I. A model of Hopfield-type octonion neural networks and existing conditions of energy functions // International Joint Conference on Neural Networks (IJCNN). 2016. Issue 2. Р. 4426–4430. doi: http://doi.org/10.1109/ijcnn.2016.7727778
URI: http://journals.uran.ua/tarp/article/view/149539
http://openarchive.nure.ua/handle/document/7851
Appears in Collections:Кафедра проектування та експлуатації електронних апаратів (ПЕЕА)

Files in This Item:
File Description SizeFormat 
Galkin_Holikov_TARP_2018_eng.pdfHolikov, M., & Galkin, P. (2018). Analysis of possibilities to use neural network for remote control of electronic devices. Technology Audit And Production Reserves, 6(2(44)), 42-49. doi:http://dx.doi.org/10.15587/2312-8372.2018.149539399.79 kBAdobe PDFView/Open
Галкін_Голіков_ТАРП_укр.pdfHolikov, M. Analysis of possibilities to use neural network for remote control of electronic devices / Maksym Holikov, Pavlo Galkin // Technology audit and production reserves. – 2018. – Vol. 6, N 2(44). - P. 42-49. – Way of Access : DOI : 10.15587/2312-8372.2018.149539.674.22 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.