Please use this identifier to cite or link to this item: http://openarchive.nure.ua/handle/document/1168
Title: Інтелектуальний аналіз медичних даних на основі гібридних нейромереж
Authors: Мулеса, П. П.
Keywords: динамічний інтелектуальний аналіз медичних даних
нейро- фаззі компресор
метод навчання-самонавчання класифікуючої-кластеризуючої нейронної мережі
діагностуюча нейро-фаззі система
dynamical medical data mining
neuro-fuzzy compressor
learning-selflearning method of classification-clustering neural network
diagnostic neuro-fuzzy systems
Issue Date: 2014
Citation: Мулеса, П. П. Інтелектуальний аналіз медичних даних на основі гібридних нейромереж : дис. ... канд. техн. наук : 05.13.23 "Системи та засоби штучного інтелекту" / П. П. Мулеса ; М-во освіти і науки України, Ужгород. нац. ун-т. – Ужгород, 2014. – 170 с.
Abstract: Метою дисертаційної роботи є розробка нових гібридних нейро-фаззі систем 19 для вирішення задач ефективного аналізу і обробки інформації на основі динамічного інтелектуального аналізу медичних даних у вигляді багатовимірних таблиць і нестаціонарних нелінійних сигналів з локальними особливостями за умов апріорної та поточної невизначеності. Запропоновано метод навчання двошарового нейро-фаззі компресора, що відрізняється використанням активаційних функцій з лінійними похідними, що дозволило підвищити швидкодію процесу оброблення даних та спростити обчислювальну реалізацію методу. Запропоновано метод навчання-самонавчання одношарової класифікуючої-кластеризуючої нейронної мережі, яка відрізняється тим, що може оброблювати інформацію як в режимі навчання з вчителем, так і без, та вирішувати задачі класифікації-кластеризації за умов класів, що перетинаються, що дозволило опрацьовувати дані в on-line режимі. Запропонована багатошарова діагностуюча нейро-фаззі система, що побудована на основі системи Такаґі-Суґено-Канґа з додатковим нелінійним шаром діагностики та модифіковано її метод навчання, що побудовано на основі критерію розпізнавання образів, яка характеризується підвищеною швидкодією та простотою обчислювальної реалізації. Удосконалено метод передобробки медичної інформації для структуризації простору факторів в задачах діагностування захворювань з використанням нечіткого дерева рішень, моделей багатокритеріального вибору та нечіткої логіки, що дало змогу провести ранжування факторів з метою виявлення найвпливовіших та їх подальшого оброблення інтелектуальною діагностуючою системою.The goal of thesis is synthesis of hybrid neuro-fuzzy systems for solving tasks of effective information analysis and processing based on dynamical medical data mining which presented by multivariate tables and non-stationary nonlinear signals with local properties under a-priory and current uncertainty. The learning method for neuro-fuzzy compressor is proposed. In this architecture we used activation function with linear derivatives, that allows increasing speed of data processing and reduces computational methods realization. The learning-self-learning method of single layer classification-clustering neural network is proposed. Such method can process information both in supervised and unsupervised learning mode and allows solving the classification-clustering tasks with fuzzy clusters in on-line mode. Multilayered diagnosis neural-network system based on Takagi-Sugeno-Kang approach with additional non-linear diagnosis layer is proposed. The learning method based on pattern recognition criterion is modified. Such system is characterized by increasing learning rate and simplicity of computational realization. Medical information preprocessing method for structuring of factors space in diagnostic medical tasks based on fuzzy decision trees, model of multi-criterion choice and fuzzy logic is improved. This method allows to provide the most important factors ranging.
URI: http://openarchive.nure.ua/handle/document/1168
Appears in Collections:Автореферати

Files in This Item:
File Description SizeFormat 
MulesapPP.pdf1.05 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.