Бодянський, Є. В.Антоненко, Т. Є.2021-11-282021-11-282019Бодянський Є. В. Глибока нео-фаззі нейронна мережа та її навчання / Є. В. Бодянський, Т. Є. Антоненко // Бионика интеллекта : научно-технический журнал. – 2019. – № 1 (92). – С. 3–8.https://openarchive.nure.ua/handle/document/18401Оптимізація швидкодії навчання глибоких нейронних мереж є надзвичайно актуальним питанням. Сучасні підходи орієнтуються на використання нейронних мереж на основі персептрону Розенблатта. Але отримувані результати не являються задовільними для індустріальних та наукових потреб в контексті швидкодії навчання нейронних мереж. Також такий підхід натикається на проблеми зникаючого та вибухаючого градієнта. Для вирішення проблеми в статті запропоновано використовувати нео-фаззі нейрон, властивості якого основані на F-перетворенні. В статті розглянуто використання нео-фаззі нейрона як основного компонента нейронної мережі. Показана архітектура глибокої нео-фаззі нейронної мережі а також алгоритм зворотньго поширення похибки для цієї архітектури з трикутною функцією принадлежності для нео-фаззі нейрона. Приведені основні переваги щодо застосування нео-фаззі нейрона як основного компоненту нейронної мережі. В статті описано за рахунок яких властивостей нео-фаззі нейрона вирішуються питання покращення швидкодії та зникаючого чи вибухаючого градієнта. Порівняно запровоновану архітектуру нео-фаззі глибокої нейронної мережі зі стандартними глибокими мережами на основі персептрону Розенблатта.ukбіоніканейронна мережаГлибока нео-фаззі нейронна мережа та її навчанняArticle