Beskorovainyi, V.Sudik, A.2024-01-212024-01-212021Beskorovainyi V. Optimization of topological structures of centralized logistics networks in the process of reengineering / V. Beskorovainyi, A. Sudik // Сучасний стан наукових досліджень та технологій в промисловості. – 2021. – № 1(15). – С. 23–31.https://openarchive.nure.ua/handle/document/25431The subject of research in the article is the topological structures of closed logistics networks. The purpose of the work is to create a mathematical model and methods for solving problems of optimization of topological structures of centralized logistics networks in the process of reengineering, taking into account many topological and functional constraints. The article solves the following tasks:analysis of the current state of the problem of system optimization of logistics networks and methods of its solution; formalization of the problem of system optimization of logistics networks as territorially distributed objects; development of a mathematical model of the problem of optimization of centralized three-level topological structures of logistics networks at the stage of reengineering; development of a method for solving the problem of optimization of centralized three-level topological structures of logistics networks at the reengineering stage; estimation of time complexity of the method of optimization of centralized three-level topological structures of logistics networks. The following methods are used: methods of systems theory, methods of utility theory, optimization and operations research. The following results were obtained: analysis of the current state of the problem of system optimization of logistics networks and methods of its solution; the problem of system optimization of logistics networks as territorially distributed objects has been formalized; developed a mathematical model of the problem of reengineering three-level topological structures of logistics networks in terms of cost and efficiency for the case of combined production and processing points; methods of directed search of variants of construction of a logistic network which use procedures of coordinate optimization and modeling of evolution on the basis of genetic algorithm are developed; estimates of the accuracy and time complexity of optimization methods of centralized three-level topological structures of logistics networks are obtained. Conclusions: Based on the results of the study of methods for solving the problem, an approximation of their accuracy and time complexity was performed. In practice, this will allow you to choose a more efficient method for solving large-scale practical problems, based on the required accuracy, available computing and time resources. The method based on the coordinate optimization procedure has a significantly higher accuracy, but it is more complex from a computational point of view. The accuracy of the evolutionary method based on a genetic algorithm can be increased by increasing the number of iterations. The practical use of the proposed mathematical model and methods of reengineering the topological structures of centralized closed logistics systems by jointly solving problems for direct and reverse flows will reduce the cost of transport activities of companies.enclosed logisticslogistics networkoptimizationreengineeringstructuretopologyOptimization of topological structures of centralized logistics networks in the process of reengineeringArticle