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Abstract  —  This paper considers the transformation of 
natural modes of single and coupled dielectric resonators 
when their material is subject to an abrupt time change in 
permittivity. Both the transient response and the new steady 
state regime are described in detail. Possibility of frequency 
shift is demonstrated. Enhancement of the frequency shift for 
the coupled modes with odd-odd symmetry in the chain has 
been shown.  
 

Index Terms — Dielectric resonators, time-varying media, 
whispering gallery modes.  

I. INTRODUCTION 
Dielectric resonators with whispering-gallery modes 

(WGM) have been the subject of significant interest in 
recent years as they exhibit properties useful for a wide 
range of applications, including low-threshold lasers [1], 
ultra-small filters [2] and sensors [3, 4]. However, much of 
the theoretical work focused upon resonators has 
concentrated upon prediction of their frequency domain 
properties, although accurate time domain modeling is 
essential for microwave design, especially for active 
devices and circuit components.  

The most widely used today numerical approach is 
FDTD method that is flexible but demands large computer 
memory. Moreover, conventional FDTD codes have 
problems with visualization of the high Q resonances.  
In this paper we use rigorous mathematical method that 
allows us to analyze problems both in the frequency 
domain and in the time domain. Applying the Laplace 
transform directly to the wave equation we derive an 
analytical solution of the problem in the frequency domain. 
Then we recover the time domain electromagnetic field by 
virtue of the computation of the inverse Laplace transform 
via the residue evaluation at singular points associated with 
eigenvalues of the structure. This approach guarantees 
accurate back transformation with controllable accuracy 
and allows us to extract and interpret physical phenomena 
easily. This method has been already successfully applied 
to a variety of time domain problems with different 
geometries [5-7]. 

 
Manuscript received April 25, 2012.  
N. K. Sakhnenko is with Kharkiv National University of Radio 
Electronics, Kharkiv, Ukraine  
(phone: 38-057-7021372; e-mail: n_sakhnenko@ yahoo.com).  
A. G. Nerukh is with Kharkiv National University of Radio Electronics, 
Kharkiv, Ukraine (e-mail: nerukh@gmail.com). 

In this paper we investigate the transient response of a 
WGM of the resonator to an abrupt change in permittivity. 
Proposed approach is extended then to the case of WGM 
transformation in a finite linear chain of coupled circular 
dielectric resonators due to temporal changes in their 
permittivity. In practice, temporal changing of the material 
constants index can be realized by varying an input signal 
in a nonlinear structure [8]; by voltage control [9]; by a 
focused laser beam as a local heat source [10] or else by a 
plasma injection [11]. Note that the temporal variations of 
the permittivity of an unbounded medium transform the 
frequency of an existing monochromatic field, however 
both the wavenumber and the field pattern are conserved 
[12, 13]. 

In this paper, the details of the field evolution during the 
transient period in a single resonator and in a linear chain 
of coupled resonators will be characterized. 

II. MATHEMATICAL FORMULATION 

A. Single resonator 

We consider a circular dielectric resonator of radius a . 
This can be viewed as a 2D model of a thin-disk 3D 
resonator within the effective refractive-index 
approximation.  Dielectric permittivity of the material is 

1ε , surrounding medium is a vacuum. The material is 
considered to be linear and non-magnetic. To describe the 
fields, the cylindrical system of coordinates , , zρ ϕ , 
centered on the resonator, is introduced. Before a change in 
the permittivity, an initial field exists in the resonator which 
is an H-polarized natural mode as this type of modes is 
dominant in thin disks; the z-component of it can be 
represented in the following form 
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c is light velocity in vacuum, 0ω  is complex valued 
eigenfrequency that is the solution of the equation  
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The time dependence is assumed as 0i (t t*)e (t t*)ω − Θ − , 

where t* 0<  is the moment of switching on the mode. At 
zero moment of time the dielectric permittivity inside the 
resonator changes abruptly in value from 1ε  to 2ε  in 
response to an external force. We now investigate the 
mechanisms that couple the initial mode to those of the 
cavity with the new permittivity, with particular emphasis 
on the transient processes occurring in such a single 
dynamic resonator. The formulation of the problem in the 
above manner permits construction of an analytical solution 
that explains the interesting phenomena in detail.  

The transformed field has to satisfy the wave equations  
2
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Here H represents zH  component of the field which is 
perpendicular to the plane of the resonator and ∆ is the 
Laplace operator 
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We apply the Laplace transform  
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directly to the wave equation (3).  

The electric field flux density, as well as the magnetic 
induction, remains continuous at time jumps of the medium 
parameters. It follows that the initial conditions in transient 
region have the form 
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 Here we adopt the evolutionary approach presented in 

[6]. Within this approach, the complete transient solution is 
explicitly constructed as a superposition of the waves 
reflected from the structure boundaries; the field at an 
instant just after the moment of switching being evaluated 
as if the transient medium is unbounded. Therefore, 
because of the finite speed of the electromagnetic waves, 
the influence of the resonator boundary appears only after a 
finite time delay from the moment of switching and this 
will be discussed further.  

We will seek the solution in the form 
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where 1 1 2 2v c , v c= ε = ε . The complete field 

within the cavity consists of the unbounded term (first term 
in (5)) and additional contributions due to the boundary. 
Similarly, in the outer region the field comprises a 
superposition of the initial field (first term in (6)) and 
contributions due to the presence of the boundary.  

Outside the cavity, the function kK (..)  guarantees 
satisfaction of the Sommerfeld outgoing radiation condition 
at infinity, and kB and kC  are unknown coefficients to be 
determined, which are chosen so that at the cylindrical 
boundary, aρ = , the tangential components of the field are 
continuous, i.e. 
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Unknown coefficients can be presented in the form 
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The expressions have the poles and the branch-cut along 

the negative real axis of the complex p-plane. There are 
poles associated with the frequency of the initial wave 

0p i= ω  and the transformed frequency 2 1 0p i v v= ± ω  
due to the permittivity changing. There is also an infinite 
number of poles associated with the zeros of the 
denominator kB  and kC  in (8). They correspond to the 
eigenfrequencies of the resonator in its new state.  

Using the asymptotic expansions for modified Bessel 
functions with large arguments, we have 
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From (9) and (10) it is observed that, upon inversion to 

the time domain, the expressions corresponding to 
k k 2B (p)I ( p v )ρ  and k kC (p)K ( p c)ρ  exhibit a time 

delay that can be expressed in terms of unit-step Heaviside 
functions, 2(v t a)Θ +ρ −  and (ct a),Θ −ρ+  inside and 
outside of the resonator, respectively. 

In the “early time” regime ( 2t a v< ) inside the 
resonator the field is described by the first term in (5) and 
exhibits the same wavenumber and shifted frequencies 
predicted from the abrupt change in the material 
parameters. It does not depend upon the boundary shape. In 
the outer region, only the initial field is present. Near the 
boundary region, the transient waves appear that 
correspond to total field given in (5) and (6). In the time 
domain they are expressible in terms of a residue sum over 
all the singular points and an integral along the branch cut. 
Examination of (5) and (6) in more detail reveals that the 
singularities in the total field at 2 1 0p i v v= ± ω  and 

0p i= ω  do not contribute to the residue sum. It is also 
confirmed that there is a term in the transient response 
inside the resonator that provides immediate cancellation of 
the primary wave.  

In the E polarization case, the problem can be solved in 
similar way – see [14, 15]. 

 

B. Linear chain of resonators 

Proposed approach can be extended to a finite linear 
chain of coupled circular dielectric resonators. We consider 
the 2D model of the linear chain of N identical circular 
resonators with the radii a.  The separation distance 
between the resonators is d , the dielectric permittivity of 
the material is 1ε . The transversal electric (H-polarized) 
WGM is considered as an initial field; the z-component of 
it can be represented in the following form 

jis( j)
z j j s s 1 j
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H ( , ) A J (k )e

+∞
ϕ

=−∞
ρ ϕ = ρ∑  inside the thj  
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ϕ

= =−∞
ρ ϕ = ρ∑ ∑  in outer space. 

Here j j( , , z)ρ ϕ , j 2...N=  is a set of N cylindrical 

systems of coordinates associated with each resonator, 

coefficients ( j)
sA , ( j)

sA can be found to satisfy 
corresponding boundary conditions (7) at each boundary as 
discussed in [16, 17]. 

At zero moment of time, the dielectric permittivity is 
changed abruptly in the whole structure from the value 1ε  
to the value 2ε . The field after the medium change satisfies 
the wave equations (3) written for each particular resonator 
and surrounding space. We solve this problem similarly to 
single-resonator case and apply the Laplace transform 
directly to the wave equations including the initial and 
boundary conditions at the circular interfaces. Using the 
addition theorem for the Bessel functions, we arrive at an 
infinite set of algebraic equations that can be truncated in 
order to provide a predetermined numerical precision. The 
resulting field in the time domain is obtained using the 
inverse Laplace transform.  

III. NUMERICAL RESULTS 
Here, we introduce dimensionless values: 0 0w a c= ω is 

the normalized frequency, T t c a= is the normalized time, 
r a= ρ is the normalized distance.  

To estimate duration of transient (also called ring-time) 
period in a single resonator, we plot the time dependence of 
the field inside the resonator. Here, 8,1WGH mode is 

considered as initial field with 0w 4.5418 0.000399i,= +  

and refractive index is 1 1n 2.631= ε = . At zero moment 
of time, the refractive index changes to the value 

2 2n 2.63= ε = . 
Fig. 1 presents the total field normalized by the 

maximum of amplitude of the initial field versus the 
normalized time near the centre of the resonator (r=0.05). 
Changing the refractive index leads to the excitation of all 
modes with the same angular dependence as initial one 
however with growing of r transient process becomes 
smooth (Fig. 2). Evaluating the residues at each singular 
pole, we conclude that maximum amplitude has the mode 
with the same field pattern as initial one as seen in Fig. 2. 
The change of the refractive index leads to the frequency 
shift of the mode from the initial value 0 0 0i′ ′′ω = ω + ω to the 
transformed value 1 1 1i′ ′′ω = ω + ω .  

Fig. 3 represents the absolute value of the normalized 
frequency shift w a c∆ = ∆ω ( 1 0′ ′∆ω = ω −ω ) of the 
transformed modes with different numbers of angular 
variations. It is seen that WGM with a greater Q-factor 
demonstrates a greater frequency shift. 
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Fig. 1. Time dependence of the transformed field (r=0.05) 
 

Abruptly decreasing the refractive index leads to an 
increase in the frequency, and increasing the refractive 
index leads to the opposite effect. 

 
Fig. 2. Time dependence of the transformed field (r=0.8) 

 
Fig. 3. Normalized frequency shift versus refractive index 

 
Proposed approach has been extended to the case of a 

linear chain of coupled resonators. If resonators are brought 
togeter, four families of coupled modes with different types 
of symmetry with respect to Ox  and Oy  axes can be 
excited [10]. Numerical results are presented for two 
coupled modes with even-even (EE) and odd-odd (OO) 
symmetry along the Ox and Oy  axes. Fig. 4 shows their 
near field patterns for N=6, with the 8,1WGH mode 

considered as initial field (the same for Fig. 5, 6). Before 
zero moment of time, 1n 2.63= . 
 

 
 

 
 

Fig. 4.  Near field patterns of EE mode (above) and OO mode (below). 
 
Fig. 5 represents the absolute value of the normalized 

frequency shift w∆ of the transformed mode versus the 
normalized separation distance between the resonators in 
the twin resonator structure (N=2). It is seen that for the 
distant resonator ( d a> ) the frequency shift is the same for 
the OO and EE modes. The frequency shift decreases for 
the EE mode and increases for the OO coupled mode if the 
resonators are brought together. 

If the number of resonators in the chain with small air-
gaps gets larger, this leads to increase in the frequency shift 
for the OO coupled mode (Fig. 6).  

 
Fig. 5. The normalized frequency shift versus the normalized separation 

distance between the resonators, N=2  

 
Fig. 6.  The normalized frequency shift versus number of the resonators 

in the chain 
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VI. CONCLUSION 
In this paper, a theoretical analysis of WGM 

transformation due to the time variation of the permittivity 
in a single resonator and in a linear chain of coupled 
resonators has been developed. The theory is based on 
eigenfunction expansion in the Laplace transform domain 
and inversion of the solution into the time domain through 
the residue evaluation.  

The obtained results reveal the resonant frequency shift 
of the transformed field. Enhancement of the frequency 
shift for the coupled modes with odd-odd symmetry in the 
chain has been shown.  
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