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In this paper the application of the Laplace transform to the analysis of circuits with distributed parameters is 

considered. As an example pulse-forming lines based on distributed parameters lines are analyzed. Such devices are 
widely applied in electronics, high-voltage technology and high-current charged particle accelerators. In the above 
examples, both of classic methods for solving partial differential equations: Fourier method and d'Alembert method 
(method of travelling waves), and method based on Laplace transform of the periodic function. The detailed solution 
of the problem of formation of voltage pulses using circuits with distributed parameters is carried out. The repeated 
Laplace transform is shown to allow to pass from partial differential equations to algebraic equations and to simplify 
the solution of the problem. The time diagrams of the processes of charge and discharge of the line for various loads 
are given. 

PACS: 52.59.-f 
 

INTRODUCTION 
Processes in electrical devices are typically de-

scribed by differential equations or systems of differen-
tial equations with respect to some unknown functions 
typically the currents in the branches of the circuit or 
voltage on the elements. Various methods [1, 2] apply 
to their solutions. In radio- and electrical-engineering 
analysis is performed using an electric scheme of the de-
vice, so in engineering practice methods have the greatest 
appeal, formalizing the task, provided the least departure 
from the scheme. Such methods include the Laplace 
transform, underlying operational method of analysis of 
radio- and electric systems and devices [3 - 7]. 

The main advantage of the operator method is the 
ability to transition from the n-th order differential equa-
tion with respect to the unknown function ( )f t  to an 
algebraic equation for the complex variable function 

( )F p . Such transform proposed Heaviside, is perform-
ing by the replacing of the differential operator d dt  on 
formally operator p, which in this case is a complex 
number, and on which trivial algebraic transformations 
possible. 

A bijective correspondence (in terms of Laplace trans-
form) of the original and the image ( ) ( )f t F p⇔  allows 
us to find the solution of the problem by the reverse transi-
tion from the image to the original using known methods. 
The conditions which function ( )f t  should satisfy to be 
performed as the original of the image ( )F p , as a rule 
take place in radio and electrical devices, so check in this 
compliance may not carry out [8]. 

It is crucial that the originals may be functions that 
describe the processes in circuits with distributed pa-
rameters and is a function of both time and coordinates. 
These circuits include the transmission and formation 
lines, in the analysis of which the unknowns are usually 
instantaneous values of voltage ( ),u t x  and current 

( ),i t x , in the various sections of line x. Although the 
simulation of such circuits yet requires the solution of 
differential equations in partial derivatives, the operator 
method nonetheless performs as a reliable and demon-
strative tool of the analysis. 

1. MODEL OF THE DISTRIBUTED 
PARAMETERS CIRCUIT 

Consider the two-wire line in which the current i 
flows in the same direction as the positive direction of 
the x axis (Fig. 1). Any arbitrarily taken an infinitesimal 
piece of the line ∆x can be represented by an equivalent 
circuit consisting of lumped elements infinitesimal ∆L, 
∆R , ∆C and ∆G which characterize the resistance and 
inductance of the wire piece and the capacitance be-
tween the wires and the leakage conductance insulation 
of the considered piece.  

 
Fig. 1. Two-wire transmission line and equivalent 

scheme of the elementary piece 
On the basis of the Kirchhoff equations for the equiv-

alent scheme of line’s piece ∆x results 
( ) ( )u x u x x L i R i

x x t x
− + ∆ ∆ ∂ ∆

= +
∆ ∆ ∂ ∆

,         (1a) 

( ) ( )i x i x x C u G u
x x t x

− + ∆ ∆ ∂ ∆
= +

∆ ∆ ∂ ∆
,        (1b)

 
and then proceed to the limit at 0x∆ →  and take into 
account the definition of a derivative with respect to the 
left-hand side of each equation (1) [9]. As a result, we 
obtain a system of equations of a transmission line 

u x L i t Ri− ∂ ∂ = ∂ ∂ + ,                         (2a) 
i x C u t Gu− ∂ ∂ = ∂ ∂ +

 
,                      (2b)

 where linear parameters introduced  
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0
lim
x

R dRR
x dx∆ →

∆
= =

∆
, 

0
lim
x

L dLL
x dx∆ →

∆
= =

∆
, 

0
lim
x

C dCC
x dx∆ →

∆
= =

∆
, 

0
lim
x

G dGG
x dx∆ →

∆
= =

∆
. 

2. BASIS OF THE OPERATOR METHOD 
To get the operator model of a transmission line let's 

apply to the system of equations (2) Laplace transform 
[4, 5]. Voltage and current (2) are a function of two var-
iables ( ),u t x , ( ),i t x , whereas in the Laplace trans-
form the integration is made by one variable. Taking 
into account that the domain of the originals definition 
by the variable t is a semi-infinite ( )0, ∞  or finite inter-
vals ( )10, t , ( )1 2,t t , we calculate the integral of the 
Laplace transform by the variable t. Then for the left-
hand part (2a), we obtain 

0 0

pt ptu d dUe dt ue dt
x dx dx

∞ ∞
− −∂

= =
∂∫ ∫ .         (3) 

It is considered here that the variables x and t are in-
dependent, so changing the order of integration and dif-
ferentiation is rightly. In addition, the partial derivative 
is replaced by the total one, because the variable p is 
regarded as a parameter [6]. 

Further, for the right side (2a), using the integration 
by parts, we get 

( )
0

ptL i t Ri e dt
∞

−∂ ∂ +∫ ( )0Li pI RI= − + + .      (4) 

In the formulas (3) and (4) by the symbols U and I 
the transformed Laplace function of voltage and current 
in the line are marked, which in the operational method 
are called as the images. Thus we have 

( ) ( ),u t x U p⇔ , ( ) ( ),i t x I p⇔ . To simplify entries 
function further the arguments will be omitted. 

Having done a similar transformation to the equation 
(2b), we obtain as a result the following relations 

( ) ( )0dU dx pL R I Li− = + − ,             (5а) 
( ) ( )0dI dx pC G U Cu− = + −

 
.           (5b)

 We note at once the Laplace transform important 
property: the initial conditions of the task are taken into 
account automatically, resulting last term in (5). For the 
lossless line R=0, G=0 and zero initial conditions the 
equations (5) are simplified 

dU dx pLI− = ,                         (6a) 
dI dx pCU− =

 
.                       (6b)

 Differentiating (6a) on the x and substituting (6b) in 
this expression we obtain: 

2 2 2 0d U dx Uγ− = .                    (7a) 
The same transform may be performed with equa-

tion (6b) that gives as the result the expression for the 
current 

2 2 2 0d I dx Iγ− = ,                      (7b) 
where the operational wave number 

p LCγ = .                             (8) 
As is known [4, 10], the general solution of a homo-

geneous linear differential equation II order form (7) is 
given by 

ch shU A x B xγ γ= + ,                  (9) 

and for the current  
( )01 sh chI Z A x B xγ γ= − − .             (10) 

Here, the designation for the operational characteris-
tic (wave) impedance has been introduced 

0Z L C= .                          (11) 

3. CALCULATION EXAMPLES 
Here consider some examples of calculation voltage 

and current distributions in line at different regimes of 
loading by means of operational method. 

3.1. THE LINE CHARGING FROM DC VOLTAGE 
SOURCE  

A segment of a line opened at the end of length l at 
time t = 0 is connected to a DC voltage source U0. The 
sequence of the solution of the problem is set forth in 
[4]. The initial energy supply in the line is absent, there-
fore, we have a problem with zero initial conditions: 

( )0, 0u x = , ( )0, 0i x = . 

 
Fig. 2. Scheme of the line charging  

from DC voltage source 
The boundary condition at the beginning of the line, 

where the DC voltage source connected (Fig.  2.), is writ-
ten as ( ) 0, 0u t U= . The second boundary condition for 
the right end of the line: ( ) 0, 0u t U= . These conditions are 
valid for any time t> 0, therefore we can write in the op-
erator form: 

00xU U p= = , 0
x l

I
=

= . 

Then, setting x = 0 in (9), on the basis of the first 
boundary condition we obtain 

0A U p= . 
Substituting x = 1 in (10), on the basis of the second 

boundary condition, 
sh ch 0A l B lγ γ− = , 

from which we find the second integration constant 
0 sh

ch
U lB

p l
γ
γ

= . 

Now substitute the integration constants calculated 
in (9), (10), and obtain images of voltage and current 

( )0 c h
ch

l xU
U

p l
γ

γ
−

= ,                     (12a)  

( )0

0

sh
ch
l xU

I
p Z l

γ
γ
−

= .                    (12b) 

As is known, to calculate the original, expressed by 
the ratio of the functions F1 and F2, one can use the de-
composition theorem in the form [6]: 

( )
( )
( )

( )
( )

11

12 2

0

0

N p tn n

n n n

F pF
f t e

F p F p=

= +
′

∑ ,         (13) 

where the summation is over all the roots of the denom-
inator  
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2 1
2

n
n

np j
LC l LC
γ p+

= = . 

Denoting by: 2x LCτ = , q T τ= , 

1 2 4l LCω π= , 

( ) ( )0 sin 2 1 2 1
2 2n

x xA U n n
l l

ππ  = + +  
 the final solu-

tion obtains in form 

( ) ( )0 1 1
1

2( . ) cos cosn
n

u t x U A n t n t n
q

ω π ω π
∞

=
= + + + +  ∑ , 

that corresponds to Fourier expansion formulas for the 
two sequences of rectangular pulses [11]. 

According to d‘Alembert method the general solu-
tion of equations (7) is written in the form 

1 2
x xU C e C eγ γ−= + , 

( )1 2
0

1̀ x xI C e C e
z

γ γ−= − − , 

where С1 and С2 again denote the integration constants, 
which are related to the constants A and B by the rela-
tions ( )1 2C A B= + , ( )2 2C A B= − . 

System of equations for calculating the integration 
constants looks like as 

1 2 0

1 2 0l l

C C U p

C e C eγ γ−

+ =

+ =
, 

solving which, we get an image of the voltage 
( )2

0
21

l xx

l
U e eU
p e

γγ

γ

− −−

−
+

= =
+

 

( ) ( ) ( )2 2 4
0

41

x l x l x l x

l

U e e e e

p e

γ γ γ γ

γ

− − − − + − −

−

+ − −
=

−
.  (14) 

Next, note that if ( )Re 0p > , then 4 1le χ− < . As a 

result the modulus of the second term in the denomina-
tor (14) is also less than unity, and we can construct the 
series 

4
4 0

1
1

n l
l n

e
e

χ
χ

∞
−

−
=

=
−

∑ , 

the substitution of which in (14) leads to 
( ) ( ) ( )2 2 40 l x l x l xxU

U e e e e
p

γ γ γγ − − − + − −− = + − − 
4

0

n l

n
e χ∞

−

=
∑ . 

Rewrite the series in expanded form 
2 2 4

0 ...
x l x l x l xp p p p
V V V VUU e e e e

p

− + −
− − − − 

 = + − − +  
 

. (15) 

Passing to the originals of the terms of the resulting 
expression, we find 

 

0 2( , ) 1 1

2 41 1 ...

U x l xu t x t t
p V V

l x l xt t
V V

−   = − + − −   
   

+ −    − − − − +        

,      (16) 

where ( )1 .  – Heaviside function. 
It is seen that the inverse Laplace transform of ex-

pression (16), taking into account the delay theorem of 
the original, gives a voltage in the form of a superposi-

tion of step waves shifted relative to each other by an 
amount that is a multiple of 4γl and propagating towards 
each other: from the beginning of the line and from the 
load. Thus, the first term determines a wave of height U0 
arising at the time l/V and propagating towards positive x. 
The second term corresponds to a wave of height U0 aris-
ing at the moment ( )2l x V−  at the end of the line, and 
propagating in the direction of decreasing x, etc. The 
imposition of waves propagating in opposite directions 
forms an interference pattern in the line (Fig. 3). 

 
Fig. 3. Travelling waves and formation of the transfer 

characteristic of the open transmitting line 

3.2. DISCHARGE LINE ON SHORT CIRCUIT 

An important case for the practice is to use the line 
as a storage element [12, 13] Consider the case of the 
short circuit lossless line pre-charged to voltage 0U  
(Fig. 4). 

 
Fig. 4. Line discharge on short circuit 

Initial conditions 
( ) 00,u x U= , ( )0, 0i x = at 0 x l< <  

using the formula (1) are provided in operator form 
0U U p= , 0I = . 

Similarly boundary conditions 
( ), 0 0u t = , ( ), 0i t l =  at 0t >  

have a such operational form 

0 0xU = = ,  0x lI = = . 
Now again we apply the Laplace transform to the 

system of telegrapher's equations for the lossless line (6) 
and obtain 

dU dx pLI− = ,                                 (17a) 

0dI dx pCU CU− = −
 
.                     (17b)

 Here, the second term on the right side (17b) implies 
that the line was charged to a voltage 0U . Its appear-
ance is due to the use of the Laplace transform to the 
right side of the equation (2b) on the condition G = 0. 
Along the way, once again we see that in the operational 
method the initial conditions are accounted automatical-
ly. Differentiating (17a) in x and substituting in the re-
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sulting expression in place of the current's derivative the 
expression (17b), we arrive at the inhomogeneous equa-
tion for voltage in the form of 

2 2 2
0d U dx U pLCUγ− = − .               (18) 

Solution of the (18) is written as: 

1 2 0
x xU C e C e U pγ γ−= + + .            (19a) 

The imagine of the current is 

( )1 2
0

1 1 x xdUI C e C e
pL dx Z

γ γ−= − = − − .  (19b) 

In order to calculate the integration constants, we 
substitute the boundary conditions in (19) and obtain a 
system of equations 

1 2 0C C U p+ = −                        (20а) 

1 2 0l lC e C eγ γ−− = .                   (20b) 
To solve it the Cramer’s method is used  

0

0
1

1

0
1 1

l l

l l

ll

U
p

e U eÑ
p e e

e e

γ γ

γ γ

γγ

− −

−

−

−

−
= = −

+

−

,    (21a) 

0

0
2

1

0
1 1

l l

l l

l l

U
p

e U eÑ
p e e

e e

γ γ

γ γ

γ γ

−

−

−

= = −
+

−

.       (21b) 

Substituting the integration constants in (19a) and 
taking into account the equality p LC p Vγ = = , we 
obtain 

2 42
0 1

l x l xx l xp p
V V V VU

U e e e e
p

γ γ
− −+

− − − − 
 = − + − − +
 
 

 

4 6 6 8

...
l x l x l x l xp p p p
V V V Ve e e e

+ − + −
− − − − 

+ + − − +



,(22) 

whose original 

( ) ( )0
2, 1 1 1x l xu t x U t t t

V V
 −   = − − − − +       

 

2 4 41 1 1l x l x l xt t t
V V V
+ − +     + − + − − − −     

     
 

6 6 81 1 1 ...l x l x l xt t t
V V V
− + −      − − + − + − −             . 

The corresponding time diagram of the voltage is 
shown in Fig. 5. As can be seen, the voltage in the line 
represents an infinite sequence of rectangular pulses of 
opposite polarity with a height 0U  and duration of 
2x/V, which is formed as a superposition of step positive 
and negative polarity functions shifted in time. 

 
Fig. 5. Formation of voltage in arbitrary cross-section 

of the sort-circuited line 

3.3. LINE DISCHARGING  
ON THE MATCHED LOAD 

Let us now consider the case in which a line charged 
to a voltage 0U  is discharged through a resistance 
equal to the wave resistance 0lR Z=  (Fig. 6). 

 
Fig. 6. Scheme of line discharging on the load 

Obviously, this task differs from the previous one 
only by boundary conditions, which now look like this: 

( ) ( )0, 0 , 0u t Z i t= ,    ( ), 0i t l =  at 0t >  
or in operator form  

00 0x xU Z I= == ,    0 0xI = = . 
Substitute these conditions in (19) and obtain 

1 2 0 1 2C C U p C C+ + = − , 

1 2 0l lC e C eγ γ−− = , 
from which we find the constants of integration 

2 0 2C U p= − , 1 0 2C U p= − 2 le γ− . 
Then the images of voltage and current respectively 

look like 
( )20 1 11

2 2
l xxU

U e e
p

γγ − −− = −  
,       (23a) 

( )20

02
l x xU

I e e
pZ

γ γ− − − = −  
.         (23b) 

Let's turn to the originals of the received expressions: 

( ) ( )0
1 1 21 1 1
2 2

x l xu t U t t t
V V

 −    = − − − −        
, (24a) 

( ) 0

0
1 1

2
U l x l xi t t t
Z V V

 − +    = − − −        
.    (24b) 
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It is important for practice to study the voltage and 
current directly on the matched load. Substituting 0x =  
in (24), we obtain the corresponding expressions for the 
instantaneous values 

( ) ( )0, 0 1 1
2

U lu t t t
V

  = − −    
,          (25a) 

( ) ( )0

0
, 0 1 1 2

2
U li t t t
Z V

  = − −    
.       (25b) 

We are convinced that the regime of discharge of the 
line for a coordinated load ensures the formation of a 
rectangular voltage pulse with height 0 2U  and dura-
tion 2l V  (Fig. 7). Therefore, the corresponding elec-
trical circuit is called the forming line. Forming lines are 
used as storage elements in modulators of powerful ra-
dio transmitters, in accelerators of charged particles. 

 
Fig. 7. Voltage pulse on the load of the matched line 

segment x=0 

4. REPEATED LAPLACE TRANSFORM 
We will consider a case now, when to the line, 

charged to tension 0U , runs down through resistance 
equal to the wave 0lR Z= . We will consider the charge 
of line without losses long l from the source of perma-
nent tension ( ) 0e t U=  through resistance of Ri (Fig. 8). 

Such mode arises up in the case when internal re-
sistance of source of charge tension it is impossible to 
ignore. Including of tension will be realized by means of 
the ideal key of S. We will count resistance of Ri to ac-
tive, that, generally, does not limit applicability of 
method of calculation. 

 
Fig. 8. Charging line scheme 

We will take the system of telegraph equations in a 
statement form (6) and again will apply transformation 
of Laplace to her. Multiplying right and left parts of 
equations (8) on sxe−  and integrating after x limits from 
0 to ∞ , we will get 

( )0sU pLI U+ = ,                   (26a) 

( )0pCU sI I+ = .                    (26b)
 We will consider thus, that functions ( ),U x p  

an ( ),I x p  satisfy to the corresponding terms, i.e. are 
originals. Here U  and I  are the functions got as a re-
sult of the repeated application of transformation of La-

place to the images U and I, s – complex variable of 
Laplace transform. Right parts of the system of equali-
zations (26) reflect property of transformation of La-
place, consisting in the automatic account of border 
terms, again. The decision of the system (26) gives ex-
pression for tension 

( ) ( )
2 2

0 0sU pLI
U

s γ

−
=

−
 .              (27) 

Here connection of tension of source of charge of 
line and tension on an entrance is expressed by state-
ment correlation  

( ) 00 in

in i

U Z
U

p Z R
=

+
, 

where inZ  is entrance statement resistance of line, equal 
in this case  

2

0 2
1
1

l

in l
eZ Z
e

γ

γ

−

−
+

=
−

 ,                      (28) 

0U p  it is an image of tension of source. 
We will put (28) in (27) and we will get after trans-

formations 
2

0 0
20

1 1
1

l

li in

U Z eU
p Z R s sk e

γ

γ γ γ

−

−

 
= +  + + −−  

,    (29) 

where 0

0

i
in

i

R Z
k

R Z
−

=
+

is a reflectivity on the entrance of 

line. 
We will consider a case, when 0iR Z> , that gives 

0ink > . 
The inverse Laplace transform of expression (29) al-

lows one to obtain an image of the voltage ( ),U p x  in 
the form 

( )20 0
20

1
1

l xx
li in

U Z
U e e

p Z R k e
γγ

γ
− −−

−
 = +  + −

.   (30) 

The terms in brackets (30) represent the incident and 
reflected waves, respectively. Performing a second in-
verse Laplace transform of (30), we find the expression 
for the instantaneous voltage in an arbitrary section of 
the line x in the form of traveling waves  

( ) 0 0

0

2, 1 1
i

U Z x l xu t x t t
Z R V V

 −   = − + − +   +    
 

2 41 1in in
l x l xk t k t
V V
+ −   + − + − +   

   
 

2 24 61 1 ...in in
l x l xk t k t
V V
+ −    + − + − +        

.    (31) 

Here it is taken into account that the factor 
( )21 1 l

ink e γ−−  in (29) is a sign of the periodic original. 

The time diagram of the voltage (Fig. 9) shows that 
the line charge occurs as a result of successive passes of 
the incident and reflected waves, the initial height 

( )0 0 0 iU Z Z R+  of which decreases in proportion to the 
value n

ink , where 0,1, 2...n =  The envelope of the charg-
ing voltage is described by a function ( )0 1 tU e t−−  

where the time constant τ= iR Cl depends on the source 
resistance iR  and capacitance of the Cl = Cl line. The 
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maximum charge voltage is U0. In a time of 3τ, the line 
will be charged to a voltage of 0.95U0, which requires 
the passage of the incident and reflected waves. 

 
Fig. 9. Line charging from DC voltage source 

For 0iR Z<  a quantity 0ink < , and (31) reduces to 
the form   

( )20 0
2 40

1
1

l xx
li in

U Z
U e e

p Z R k e
γγ

γ
− −−

−
= + ++ −

 

( ) ( )2 4l x l x
in ink e k eγ γ− + − − + + 

,             (32) 

and in the formula for the instantaneous value of the 
voltage (31) it is necessary to take into account the neg-
ative value ink . 

If 0iR Z= , then in (31) there remain only two 
terms, hence, the line charge is carried out during two 
passes of the wave along the line, i.e. the charge time is 

2ct l LC= . 
Note that, if 0 1U = , then (31) is a transient re-

sponse ( ),h t x . 
Then the line voltage when the input is acted upon 

with an arbitrary time dependence of the voltage can be 
calculated using the Duhamel integral. 

Such a result allows performing calculations, for ex-
ample, in the case of using a non-ideal commutator S. 

Substituting in (30) instead 0U p  of the coefficient 
1, we obtain the transfer function of the line 

( ) ( )20
20

1
1

l xx
li in

Z
K p e e

Z R k e
γγ

γ
− −−

−
 = +  + −

 (33) 

the original of which is an impulse response ( )g t  [1].   
Then the line voltage for an arbitrary exciting func-

tion at the input can be calculated using the overlap in-
tegral [1, 2]. So, for example, with an exponential volt-

age pulse at the input ( ) ( )1 0 1 tu t U e α−= − , we get: 

( ) 0 0

0
, 1 1

xt
V

i

U Z xu t x e t
Z R V

α − − 
 

 
   = − − +   +    

 

2
21 1

l xt
V l xe t

V

α − − − 
 

 
−  − − +      

 

2
21 1

l xt
V

in
l xk e t
V

α + − − 
 

 
+  + − − +      

 

4
41 1 ...

l xt
V

in
l xk e t
V

α − − − 
 

 
−   + − − +         

. 

5. DUAL FORMING LINE (BLUMLEIN LINE) 
The scheme of the double forming line is two seg-

ments of a line of equal length with the wave resistance 
0Z  included in series. In the rupture of the lower, 

"earth" conductor of the line, a load resistance of 
R = 2 0Z  is included (Fig. 10).   

 
Fig. 10. Dual forming line 

DFLs have found application in the technology of 
high-current accelerators of relativistic electron beams, 
as elements of powerful modulators of radio transmit-
ters, as well as generators of high-voltage pulses of na-
nosecond duration [12, 14]. In Fig. 11 is a diagram of 
the DFL of a coaxial structure. The coaxial line can be 
obtained from a two-wire line, which is shown in 
Fig. 11, if the latter is first folded by turning with the 
center at the point O. As a result, the upper electrodes of 
the lines coincide, and the lower ones form two parallel 
equal-sized segments. All three segments are generators 
of three coaxial cylinders, which can be constructed if 
the generated linear construction is rotated around the 
axis O1O2. Since the wave resistance of the coaxial line 
is proportional to the logarithm of the ratio of the elec-
trode diameters [5], in order to ensure the equality of the 
wave impedances of each of the lines to a value Z0, the 
diameters should be in the ratio 2d = 1 3d d .  

Coaxial DFL is charged from a high-voltage source E 
by feeding it to an intermediate electrode. In practice, 
such a source can serve as a generator of Marx [15]. 
Then, after the activation of the key S1, the process of 
forming a voltage pulse on the load takes place. As a 
load, a segment of a coaxial line appears in this case, 
formed by the electrodes d2 and d3, with a wave re-
sistance of 2 0Z . 

The generated voltage pulse p l LCτ =  reaches the 
key S2, after which it is applied to the cathode of the 
vacuum diode of the accelerator. As a result of field 
emission, an electron beam is formed in the vacuum 
tube. The inductance of the throttle Ldr  provides an AC 
decoupling of the internal and external electrodes during 
the duration of the pulse on the load. The high-voltage 
insulator Ins separates the water part of the accelerator 
from the vacuum one. 

As a dielectric filling the interelectrode space, dis-
tilled water is used. So, for example, to form a pulse with 
a duration of τp = 50 ns, the line length should equal 

2p H Ol cτ ε=  = 1.6 m, where c − is the speed of light 

in a vacuum. At the same time, the shortening of the elec-
trical length of the line is provided by slowing the propa-
gation velocity of the wave in the line due to the high 
value of the dielectric constant of water: 2H Oε ≈ 80. The 
required electrical strength of water insulation is achieved 
by distillation, as well as deionization of water. 
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Fig. 11. Coaxial dual-forming line in the high-current electron accelerator 

 

The equivalent circuit for the calculation is shown in 
Fig. 12. The expression for the instantaneous voltage value 
on the load of the DFL follows from the Kirchhoff law. 

( ) ( ) ( )22 ' 11', 0 ,lu t u t u t l= − ,           (34) 
where ( )22 ' , 0u t and ( )11' ,u t l are the stresses in the 
corresponding sections of the line. We calculate each of 
these quantities. 

 
Fig.12. Equivalent scheme of the dual-forming line 
In the initial state, both lines are charged to voltage 

0U , i.e. initial conditions: 0( , 0)u x U= . Boundary con-
ditions for the first line 

( ), 0 0u t = ,    ( ) ( )0, 3 ,u t l Z i t l=  for 0t >  
or in the operator form 

0 0xU = = ,  03x l x lU Z I= == . 
This implies a system of equations for calculating 

the integration constants 
1 2 0 0C C U p+ + = , 

( )1 2 1 23l l l lC e C e C e C eγ γ γ γ− −+ = − − . 

Omitting the intermediate calculations, we write the 
expression for the voltage in section 11' 

0 33 11
2 2

l lU
U e e

p
γ γ− − = − + 

 
.             (35) 

Here the first term is a stress wave propagating in 
the load direction from the short-circuited beginning of 
the line, the second term represents a wave reflected 
from the end of the line and propagating to its begin-
ning, the third term is a secondary reflection from the 
line beginning. In each case, the reflection coefficient is 
determined by the impedance value in the correspond-
ing section of the line. At the beginning of the line at  
x = 0, we get 1k = − , at the end of the line 1 2k = . 

Expand the series and use the delay theorem of the 
original, write the expression for the instantaneous volt-
age at the end of the line for x=l 

( )11' 0
3 1 31 1 1
2 2

l lu U t t t
V V

    = − − + −        
.      (36) 

Let us pass to the analysis of the second line. Input 
of the second line is forced by the wave refracted from 

the first line into the second one. Refraction coefficient 
here is equal 

1 1 2q k= − =  
so, input voltage in cross section 22’ at t=l/V equals 

0 2U− . Final expression for voltage 22 'u  

( )22 ' 0
1 1 31 1 1
2 2

l lu U t t t
V V

    = − − + −        
.        (37) 

Resulted pulse voltage on the line load is 

0
31 1l

l lu U t t
V V

    = − − −        
. 

Corresponding time diagram is shown in Fig. 13. 

a 

b 

c 
Fig. 13. Forming output pulse of the Blumlein line 

a) first line output; b) second line input; 
c) voltage on the load 

The result can be verified by calculating the energy 
balance in the system. Thus, the initial energy reserve was 

2
1 0W Cl U= . 

The only dissipative element in the system is the 
load resistance. The energy released in it in the form of 
Joule heat is 

2
2 0 2

2 0
0 00

21
2 2l

U l
W u dt CU l

Z Z V

∞
= = =∫ . 

As you can see, the results obtained coincide. 
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CONCLUSIONS 
1. It is shown that the Laplace transform makes it 

possible to simplify considerably the problem of analyz-
ing processes in forming lines. It is noted that the La-
place transform of the telegraph equations of the line 
allows us to take into account the initial conditions of 
the problem automatically. 

2. Examples of calculation of various line regimes 
that can be used in practice are given. The solution of 
the line equations by the classical method allows one to 
obtain an expression for the desired functions in the 
form of a Fourier series. Thus, as a result, we obtain a 
spectrum of voltage or current in the line, which can be 
very useful for further frequency analysis. 

3. The method of traveling waves makes it possible to 
obtain a clear picture of the distribution of voltage and 
current in the line. It is shown that wandering waves arise 
as a result of the reflection of voltage and current waves 
in a line from the inhomogeneities of its structure.  

Processes in the line are a manifestation of the inter-
ference pattern of wandering waves. We also note that 
the method of wandering waves most adequately re-
flects the picture of processes in the transmission lines 
of electric energy in the regime of unintentional impulse 
overloads or the influence of external factors (for exam-
ple, lightning discharge) [15, 16]. Examples are given of 
calculating the time characteristics of a line and calcu-
lating the voltage in the case of an arbitrary source func-
tion at the input. 

4. It is shown that by the repeated Laplace transform 
of the operators form telegrapher equations one can go 
over to algebraic equations, which greatly simplifies the 
calculation. The boundary conditions are automatically 
taken into account. 
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МОДЕЛИРОВАНИЕ РЕЖИМОВ В ИМПУЛЬСНЫХ ФОРМИРУЮЩИХ ЛИНИЯХ ОПЕРАТОРНЫМ МЕТОДОМ  
В.И. Чумаков, Ю.Ф. Лонин, O.И. Харченко 

Рассмотрено применение преобразования Лапласа для анализа цепей с распределенными параметрами. В качестве 
примера анализируются импульсные формирующие линии. Такие устройства широко применяются в электронике, вы-
соковольтной технике и сильноточных ускорителях заряженных частиц. В приведенных примерах рассматриваются как 
классические методы решения дифференциальных уравнений в частных производных: метод Фурье и метод Даламбера 
(метод блуждающих волн), так и метод, основанный на преобразовании Лапласа периодической функции. Проведено 
детальное решение задачи формирования импульсов напряжения с использованием схем с распределенными парамет-
рами. Показано, что повторное преобразование Лапласа позволяет перейти от уравнений в частных производных к ал-
гебраическим уравнениям и упростить решение проблемы. Приводятся временные диаграммы процессов заряда и раз-
ряда линии для различных нагрузок. 

МОДЕЛЮВАННЯ РЕЖИМІВ В ІМПУЛЬСНИХ ФОРМУЮЧИХ ЛІНІЯХ ОПЕРАТОРНИМ МЕТОДОМ 
В.І. Чумаков, Ю.Ф. Лонін, O.І. Харченко 

Розглянуто застосування перетворення Лапласа для аналізу ланцюгів з розподіленими параметрами. Як приклад 
аналізуються імпульсні формуючі лінії. Такі пристрої широко застосовуються в електроніці, високовольтній техніки і 
сильнострумових прискорювачах заряджених частинок. У наведених прикладах розглядаються як класичні методи 
розв’язання диференційних рівнянь у часткових похідних: метод Фур'є і метод Даламбера (метод блукаючих хвиль), так 
і метод, заснований на перетворенні Лапласа періодичної функції. Проведено детальне розв’язання задачі формування 
імпульсів напруги з використанням схем з розподіленими параметрами. Показано, що повторне перетворення Лапласа 
дозволяє перейти від рівнянь у приватних похідних до алгебраїчних рівнянь і спростити розв’язання задачі. Наводяться 
часові діаграми процесів заряду і розряду лінії для різних навантажень. 
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