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In this paper the application of the Laplace transform to the analysis of circuits with distributed parameters is
considered. As an example pulse-forming lines based on distributed parameters lines are analyzed. Such devices are
widely applied in electronics, high-voltage technology and high-current charged particle accelerators. In the above
examples, both of classic methods for solving partial differential equations: Fourier method and d'Alembert method
(method of travelling waves), and method based on Laplace transform of the periodic function. The detailed solution
of the problem of formation of voltage pulses using circuits with distributed parameters is carried out. The repeated
Laplace transform is shown to allow to pass from partial differential equations to algebraic equations and to simplify
the solution of the problem. The time diagrams of the processes of charge and discharge of the line for various loads

are given.
PACS: 52.59.-f

INTRODUCTION

Processes in electrical devices are typically de-
scribed by differential equations or systems of differen-
tial equations with respect to some unknown functions
typically the currents in the branches of the circuit or
voltage on the elements. Various methods [1, 2] apply
to their solutions. In radio- and electrical-engineering
analysis is performed using an electric scheme of the de-
vice, so in engineering practice methods have the greatest
appeal, formalizing the task, provided the least departure
from the scheme. Such methods include the Laplace
transform, underlying operational method of analysis of
radio- and electric systems and devices [3 - 7].

The main advantage of the operator method is the
ability to transition from the n-th order differential equa-
tion with respect to the unknown function f (t) to an

algebraic equation for the complex variable function
F ( p). Such transform proposed Heaviside, is perform-

ing by the replacing of the differential operator d/dt on

formally operator p, which in this case is a complex
number, and on which trivial algebraic transformations
possible.

A bijective correspondence (in terms of Laplace trans-
form) of the original and the image f (t) < F(p) allows

us to find the solution of the problem by the reverse transi-
tion from the image to the original using known methods.
The conditions which function f (t) should satisfy to be

performed as the original of the image F ( p), as a rule

take place in radio and electrical devices, so check in this
compliance may not carry out [8].

It is crucial that the originals may be functions that
describe the processes in circuits with distributed pa-
rameters and is a function of both time and coordinates.
These circuits include the transmission and formation
lines, in the analysis of which the unknowns are usually
instantaneous values of voltage u(t,x) and current

i(t,x), in the various sections of line x. Although the

simulation of such circuits yet requires the solution of
differential equations in partial derivatives, the operator
method nonetheless performs as a reliable and demon-
strative tool of the analysis.
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1. MODEL OF THE DISTRIBUTED
PARAMETERS CIRCUIT

Consider the two-wire line in which the current i
flows in the same direction as the positive direction of
the x axis (Fig. 1). Any arbitrarily taken an infinitesimal
piece of the line Ax can be represented by an equivalent
circuit consisting of lumped elements infinitesimal AL,
AR, AC and AG which characterize the resistance and
inductance of the wire piece and the capacitance be-
tween the wires and the leakage conductance insulation
of the considered piece.

1

Fig. 1. Two-wire transmission line and equivalent
scheme of the elementary piece

On the basis of the Kirchhoff equations for the equiv-
alent scheme of line’s piece Ax results

u(x)—u(x+Ax) _ALdi | AR

AX AX Ot AX
i(x)—i(x+Ax)_£a_u+£u, (1b)
AX AX Ot  AX

and then proceed to the limit at Ax — 0 and take into

account the definition of a derivative with respect to the

left-hand side of each equation (1) [9]. As a result, we

obtain a system of equations of a transmission line
—ou/ox =L ai/ot+Ri,
—di/ox=Cau/ot+Gu ,

where linear parameters introduced

(2a)
(2b)
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2. BASIS OF THE OPERATOR METHOD

To get the operator model of a transmission line let's
apply to the system of equations (2) Laplace transform
[4, 5]. Voltage and current (2) are a function of two var-
iables u(t,x), i(t,x), whereas in the Laplace trans-

form the integration is made by one variable. Taking
into account that the domain of the originals definition
by the variable t is a semi-infinite (0, oo) or finite inter-

vals (0,t), (%,ty), we calculate the integral of the

Laplace transform by the variable t. Then for the left-
hand part (2a), we obtain
fa—ue_ptdt :ijue—ptdt _av (3)
o OX dx ; dx
It is considered here that the variables x and t are in-
dependent, so changing the order of integration and dif-
ferentiation is rightly. In addition, the partial derivative
is replaced by the total one, because the variable p is
regarded as a parameter [6].
Further, for the right side (2a), using the integration
by parts, we get

[ (Lai/ot+Rik P'dt =—Li(0)+pl +RI. (4)
0
In the formulas (3) and (4) by the symbols U and |
the transformed Laplace function of voltage and current
in the line are marked, which in the operational method
are called as the images. Thus we have
u(t,x)=U(p), i(t,x)< 1(p). To simplify entries
function further the arguments will be omitted.
Having done a similar transformation to the equation
(2b), we obtain as a result the following relations
—dU/dx =(pL+R)I-Li(0), (5a)
—dl/dx=(pC+G)U -Cu(0) . (5b)
We note at once the Laplace transform important
property: the initial conditions of the task are taken into
account automatically, resulting last term in (5). For the
lossless line R=0, G=0 and zero initial conditions the
equations (5) are simplified
—dU/dx = pLI, (6a)
—dl/dx=pCU . (6b)
Differentiating (6a) on the x and substituting (6b) in
this expression we obtain:
d2u/dx? -5%U =0. (7a)
The same transform may be performed with equa-
tion (6b) that gives as the result the expression for the
current
d?1/dx? - %1 =0,
where the operational wave number
y=pJLC. ®
As is known [4, 10], the general solution of a homo-

geneous linear differential equation Il order form (7) is
given by

(70)

U =Achyx+Bshyx, 9)
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and for the current
| =-1/Zy (Ashyx—Bchyx). (10)
Here, the designation for the operational characteris-
tic (wave) impedance has been introduced

Zy =4/L/C.
3. CALCULATION EXAMPLES

Here consider some examples of calculation voltage
and current distributions in line at different regimes of
loading by means of operational method.

3.1. THE LINE CHARGING FROM DC VOLTAGE
SOURCE

A segment of a line opened at the end of length | at
time t = 0 is connected to a DC voltage source U,. The
sequence of the solution of the problem is set forth in
[4]. The initial energy supply in the line is absent, there-
fore, we have a problem with zero initial conditions:
u(0,x)=0,i(0,x)=0.

S

2

The boundary condition at the beginning of the line,
where the DC voltage source connected (Fig. 2.), is writ-
ten as u(t,0)=Uy. The second boundary condition for

the right end of the line: u(t,0)=U, . These conditions are

valid for any time t> 0, therefore we can write in the op-
erator form:

(11)

]

o>«
Fig. 2. Scheme of the line charging
from DC voltage source

Ulo =Yo/p. 1], =0.

Then, setting x = 0 in (9), on the basis of the first
boundary condition we obtain

A=Ug/p.
Substituting x = 1 in (10), on the basis of the second
boundary condition,
Ashyl-Bchyl =0,
from which we find the second integration constant
g Yoshz!
p chyl
Now substitute the integration constants calculated
in (9), (10), and obtain images of voltage and current

U :U_OCh]/(|—X)

12a
p chyl (122)
hy(l-
I :U_OLX)_ (12b)
p Zgchyl

As is known, to calculate the original, expressed by
the ratio of the functions F; and F,, one can use the de-
composition theorem in the form [6]:

F (0) N R (pn ) ppt
f(t)= + g'n
© F0) mnf(p) W

where the summation is over all the roots of the denom-
inator
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0 = 7n _j2n+1£
" JIc "IWLC 2

T=2XJLC,

Denoting by:

oy = 22/414C .

A, =Ugsin [(Zn +1)72Zﬂ/(2n +1)%|§ the final solu-

tion obtains in form

q=T/z,

u(tx)=U, +§ i Ay [ cos (et +7)+cos (neyt +nr) |,
n=1

that corresponds to Fourier expansion formulas for the
two sequences of rectangular pulses [11].

According to d*Alembert method the general solu-
tion of equations (7) is written in the form

X —rX
U =C167 +Cze r ’

1 _
o e
where C; and C, again denote the integration constants,
which are related to the constants A and B by the rela-
tions C; =(A+ B)/2, C, :(A—B)/Z.

System of equations for calculating the integration
constants looks like as
C +Cy=Uqg/p
ce’ +Ce =0’
solving which, we get an image of the voltage
! :U_0877X +e—7(2|—x)

p 1+e7%
Uo e—yx +e—y(2|—x) _e—7(2I+x) _e—y(4l—x)
- . (14
p 1_e—47| ( )

Next, note that if Re( p) >0, then ‘e“‘l' ‘ <1.Asa

result the modulus of the second term in the denomina-
tor (14) is also less than unity, and we can construct the
series
1 _ i e74n;(| ’
1-g™4 n=0
the substitution of which in (14) leads to

U :U_0|:e—y>< L@ _ g2 _ef;/(4|fx)} i -4nzl '

p n=0
Rewrite the series in expanded form
U 7p1 7p2I7x 7p2|+x 7p4lfx
U=-0le Vie V —e V _¢

. Vo] (15)

Passing to the originals of the terms of the resulting
expression, we find

Up

a5
Al

where 1(.) - Heaviside function.

It is seen that the inverse Laplace transform of ex-
pression (16), taking into account the delay theorem of
the original, gives a voltage in the form of a superposi-
ISSN 1562-6016. BAHT. 2018. NeA(116)

u(t, x) =

» (16)

tion of step waves shifted relative to each other by an
amount that is a multiple of 4y/ and propagating towards
each other: from the beginning of the line and from the
load. Thus, the first term determines a wave of height U,
arising at the time 1/V and propagating towards positive Xx.
The second term corresponds to a wave of height Uy aris-

ing at the moment (21 —x)/V at the end of the line, and
propagating in the direction of decreasing x, etc. The
imposition of waves propagating in opposite directions
forms an interference pattern in the line (Fig. 3).
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Fig. 3. Traveiling waves and formation of the transfer
characteristic of the open transmitting line

3.2. DISCHARGE LINE ON SHORT CIRCUIT

An important case for the practice is to use the line
as a storage element [12, 13] Consider the case of the
short circuit lossless line pre-charged to voltage Ug

(Fig. 4).

v

[ >x
Fig. 4. Line discharge on short circuit
Initial conditions
u(0,x)=Uq, i(0,x)=0at 0<x<I
using the formula (1) are provided in operator form
U=Uy/p, I =0.
Similarly boundary conditions
u(t,0)=0,i(t,1)=0att>0
have a such operational form
U|x=0 =0, I|x=| =0.
Now again we apply the Laplace transform to the

system of telegrapher's equations for the lossless line (6)
and obtain

—dU/dx = pLI, (17a)

—dl/dx= pCU -CUj . (17b)

Here, the second term on the right side (17b) implies
that the line was charged to a voltage U . Its appear-
ance is due to the use of the Laplace transform to the
right side of the equation (2b) on the condition G = 0.
Along the way, once again we see that in the operational
method the initial conditions are accounted automatical-
ly. Differentiating (17a) in x and substituting in the re-
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sulting expression in place of the current's derivative the
expression (17b), we arrive at the inhomogeneous equa-
tion for voltage in the form of

d2U/dx? - y%U =—pLCU, . (18)
Solution of the (18) is written as:
U=Ce" +Che” +Uq/p. (19a)

The imagine of the current is
| :—i("—uz—i(clefX —cze—”). (19b)
pL dx Zg
In order to calculate the integration constants, we
substitute the boundary conditions in (19) and obtain a
system of equations

Cl +C2 Z—Uo/p (203)
ce”t —c,e™ =o0. (20b)
To solve it the Cramer’s method is used
U
-0 4
p
i o - U A
Nl = __0 ¢ 1 (213.)
1 1 p et 4o
o/ g7l
1 _Yo
p
I I
. e’ 0 u Y
R, =t — -0 (21b)
1 1 p et 4o
e/l e

Substituting the integration constants in (19a) and
taking into account the equality y=pvLC =p/N , we
obtain

U 7p£ 772I -X B 2l+x —p4l -X
U=—2]1-|e V4e vV —e vV g VvV 4
p
B 4] +x _ 6l-x B 6l+x B 8l-x
+€e Viye V e V e V 4. (22)

whose original

u(t,x)=Uy {1(t)—1(t —Vij—l(t - ZIV_ X}r
+1(t— 2I\7xj+1[t_4l\/—xj_1[t_4l\7xJ_
_1(t— 6'\/_Xj+1[t— 6'\7xj+1(t—8l\/_xJ—..} _

The corresponding time diagram of the voltage is
shown in Fig. 5. As can be seen, the voltage in the line
represents an infinite sequence of rectangular pulses of
opposite polarity with a height U, and duration of
2x/V, which is formed as a superposition of step positive
and negative polarity functions shifted in time.
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Pig. 5. Formation of voltage in arbitrary cross-section
of the sort-circuited line

3.3. LINE DISCHARGING
ON THE MATCHED LOAD

Let us now consider the case in which a line charged
to a voltage U, is discharged through a resistance

equal to the wave resistance R, =Z, (Fig. 6).
sk,

[ >X
Fig. 6. Scheme of line discharging on the load

Obviously, this task differs from the previous one
only by boundary conditions, which now look like this:

! ‘

u(t,0)=2Z4i(t,0), i(tl)=0att>0
or in operator form
U|x=O:ZOI|x:O' I|x=O:0'

Substitute these conditions in (19) and obtain
Cl +C2 +U0/p=C1—C2,
ce” —ce” =0,
from which we find the constants of integration
C, =-Ug/2p, C =-Ug/2p e/,
Then the images of voltage and current respectively
look like
U :U_O[l_le—ﬂ le—y(ZI—x)}’ (23a)
p 2 2
| = Yo [6—7(2'—X) _e X ] :
2 pZO
Let's turn to the originals of the received expressions:

u(t)=Up {1(t)—%1[t—3j—%l{t—$ﬂ , (242)
i(t)= ZUT‘;Ht —I\_/—Xj—l(t —I\J;—XH . (24b)
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It is important for practice to study the voltage and
current directly on the matched load. Substituting x=0
in (24), we obtain the corresponding expressions for the
instantaneous values

u(t,0) :U?O{l(t)_l(t-\m,

i(t,O):zuT(;[l(t)—l(t—Z\ITﬂ. (25b)

We are convinced that the regime of discharge of the
line for a coordinated load ensures the formation of a
rectangular voltage pulse with height U, /2 and dura-

tion 21V (Fig. 7). Therefore, the corresponding elec-

trical circuit is called the forming line. Forming lines are
used as storage elements in modulators of powerful ra-
dio transmitters, in accelerators of charged particles.

(25a)

u
Up/2
¢ i S
0 |
t
U2 L
Up/2
0 i 2Vt
Fig. 7. Voltage pulse on the load of the matched line
segment x=0

4. REPEATED LAPLACE TRANSFORM

We will consider a case now, when to the line,
charged to tension U, , runs down through resistance
equal to the wave R, =Z,. We will consider the charge
of line without losses long | from the source of perma-
nent tension e(t)=U, through resistance of R; (Fig. 8).

Such mode arises up in the case when internal re-
sistance of source of charge tension it is impossible to
ignore. Including of tension will be realized by means of
the ideal key of S. We will count resistance of Ri to ac-
tive, that, generally, does not limit applicability of
method of calculation.

!

0

Fig. 8. Charging line scheme

We will take the system of telegraph equations in a
statement form (6) and again will apply transformation
of Laplace to her. Multiplying right and left parts of

equations (8) on e™** and integrating after x limits from
0to oo, we will get

sU +pLI =U (0), (26a)

pCU +s1 =1(0). (26b)

We will consider thus, that functions U (x, p)
anl(x, p) satisfy to the corresponding terms, i.e. are

originals. Here U and 1 are the functions got as a re-
sult of the repeated application of transformation of La-
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place to the images U and I, s — complex variable of
Laplace transform. Right parts of the system of equali-
zations (26) reflect property of transformation of La-
place, consisting in the automatic account of border
terms, again. The decision of the system (26) gives ex-
pression for tension
sU (0)— pLI (0)
2 _ 7/2

Here connection of tension of source of charge of
line and tension on an entrance is expressed by state-
ment correlation

U= (27)

Ug 7
U (0)= —0__“in__
P Zin +R
where Z;, is entrance statement resistance of line, equal
in this case

Zin=2 , (28)

U/ p itisanimage of tension of source.
We will put (28) in (27) and we will get after trans-

formations
_u 7 =271

g_-Yo_ % 1 {1 L8 ] (29)
s—y

P Zo+Ri1-k,e 2 (s+r

R —Z
where ki, = R! +ZZ
1

is a reflectivity on the entrance of

line.
We will consider a case, when R; >Z, that gives

kin >0.
The inverse Laplace transform of expression (29) al-
lows one to obtain an image of the voltage U (p, X) in

the form
_Yo_% L
P Zo+Ri 1-kje 2!

[e"’x +e_7(2|_x)} . (30)

The terms in brackets (30) represent the incident and
reflected waves, respectively. Performing a second in-
verse Laplace transform of (30), we find the expression
for the instantaneous voltage in an arbitrary section of
the line x in the form of traveling waves

u -
O—Zol(t—lj+1(t—2| XJ+
Zg+R; \ \Y
+kin1(t—2|+Xj+kin1[t—4l_xj+
\ \Y
4l +x 6l —x
+k§11(t— y j+ki%1(t— y j+} (31)

Here it is taken into account that the factor
]/(1—kine‘27' ) in (29) is a sign of the periodic original.

u(t,x)=

The time diagram of the voltage (Fig. 9) shows that
the line charge occurs as a result of successive passes of
the incident and reflected waves, the initial height
UgZo/(Zo +R;) of which decreases in proportion to the

value ki), where n=0,1,2... The envelope of the charg-
ing voltage is described by a function Uo(l—e*t/f)
where the time constant 7= R; Cl depends on the source
resistance R; and capacitance of the C, = CI line. The
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maximum charge voltage is Ug. In a time of 37, the line
will be charged to a voltage of 0.95U,, which requires
the passage of the incident and reflected waves.

wfta)
[

ke 1k U
i | Ecaaacayeni

7]
Fig. 9. Line charging from DC voltage source
For R; <Z, a quantity ki, <0, and (31) reduces to
the form

U = U_O ZO 1 |:e_7x +e_7(2|_x) +
P Zo+Ri 1-kZe ™

+ kine77(2|+x) + kinefy(4lfx) } ,

and in the formula for the instantaneous value of the
voltage (31) it is necessary to take into account the neg-

ative value k;, .
If R =Zy, then in (31) there remain only two

terms, hence, the line charge is carried out during two
passes of the wave along the line, i.e. the charge time is

t. =2IJLC.
Note that, if Uy =1, then (31) is a transient re-
sponse h(t, x) .

Then the line voltage when the input is acted upon
with an arbitrary time dependence of the voltage can be
calculated using the Duhamel integral.

Such a result allows performing calculations, for ex-
ample, in the case of using a non-ideal commutator S.

Substituting in (30) instead Ug /p of the coefficient

1, we obtain the transfer function of the line

Z 1 x L (21=x)
K(p)= e el } 33
(») Zy +Rj 1-k;,e " [ " %)

(32)

the original of which is an impulse response g(t) [1].

Then the line voltage for an arbitrary exciting func-
tion at the input can be calculated using the overlap in-
tegral [1, 2]. So, for example, with an exponential volt-

age pulse at the input uy (t) =Uy (1—e‘0‘t ) , We get:

X
oy [ )
u(t,x):& 1-e v 1[t—vlj+

ZO+Ri
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5. DUAL FORMING LINE (BLUMLEIN LINE)

The scheme of the double forming line is two seg-
ments of a line of equal length with the wave resistance
Zy included in series. In the rupture of the lower,

"earth" conductor of the line, a load resistance of
R=2Z, isincluded (Fig. 10).

ef) k;] ) <L<s I
r &
T /J\‘—!—‘ » T /J

T~ axT .7
L

Fig. 10. Dual forming line

DFLs have found application in the technology of
high-current accelerators of relativistic electron beams,
as elements of powerful modulators of radio transmit-
ters, as well as generators of high-voltage pulses of na-
nosecond duration [12, 14]. In Fig. 11 is a diagram of
the DFL of a coaxial structure. The coaxial line can be
obtained from a two-wire line, which is shown in
Fig. 11, if the latter is first folded by turning with the
center at the point O. As a result, the upper electrodes of
the lines coincide, and the lower ones form two parallel
equal-sized segments. All three segments are generators
of three coaxial cylinders, which can be constructed if
the generated linear construction is rotated around the
axis 0,0,. Since the wave resistance of the coaxial line
is proportional to the logarithm of the ratio of the elec-
trode diameters [5], in order to ensure the equality of the
wave impedances of each of the lines to a value Z,, the

diameters should be in the ratio d,=/d;d3 .

Coaxial DFL is charged from a high-voltage source E
by feeding it to an intermediate electrode. In practice,
such a source can serve as a generator of Marx [15].
Then, after the activation of the key S1, the process of
forming a voltage pulse on the load takes place. As a
load, a segment of a coaxial line appears in this case,
formed by the electrodes d2 and d3, with a wave re-
sistance of 27, .

The generated voltage pulse 7o =IWLC reaches the

key S2, after which it is applied to the cathode of the
vacuum diode of the accelerator. As a result of field
emission, an electron beam is formed in the vacuum
tube. The inductance of the throttle Ly, provides an AC
decoupling of the internal and external electrodes during
the duration of the pulse on the load. The high-voltage
insulator Ins separates the water part of the accelerator
from the vacuum one.

As a dielectric filling the interelectrode space, dis-
tilled water is used. So, for example, to form a pulse with
a duration of 7,= 50ns, the line length should equal

| = CTp/ /EHzo = 1.6 m, where ¢ — is the speed of light

in a vacuum. At the same time, the shortening of the elec-
trical length of the line is provided by slowing the propa-
gation velocity of the wave in the line due to the high
value of the dielectric constant of water: &, ~ 80. The

required electrical strength of water insulation is achieved
by distillation, as well as deionization of water.
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Fig. 11. Coaxial dual-forming line in the high-current electron accelerator

The equivalent circuit for the calculation is shown in
Fig. 12. The expression for the instantaneous voltage value
on the load of the DFL follows from the Kirchhoff law.

U () =tz (0) Uy (t1), (34)
where Uy, (t,0)and Uy (t,1)are the stresses in the

corresponding sections of the line. We calculate each of
these quantities.

Upp

3 R!_

Fig.12. Equivalent scheme of the dual-forming line

In the initial state, both lines are charged to voltage
Uy, i.e. initial conditions: u(x,0)=U,. Boundary con-
ditions for the first line

u(t,0)=0, wu(t,1)=3Zsi(t,I) for t>0
or in the operator form
Ul =0, U[_ =3Z0 1|

This implies a system of equations for calculating

the integration constants
Cl+C2 +U0/p=0,

qﬂ+qgﬂz4ﬁykcﬁﬂy

Omitting the intermediate calculations, we write the
expression for the voltage in section 11'

U
:_0(1_§e_7| +1e_37| j .
p 2 2

Here the first term is a stress wave propagating in
the load direction from the short-circuited beginning of
the line, the second term represents a wave reflected
from the end of the line and propagating to its begin-
ning, the third term is a secondary reflection from the
line beginning. In each case, the reflection coefficient is
determined by the impedance value in the correspond-
ing section of the line. At the beginning of the line at
x =0, we get k =1, at the end of the line k =1/2.

Expand the series and use the delay theorem of the

original, write the expression for the instantaneous volt-
age at the end of the line for x=I

U1 =Yg {1(t)—§1(t —Vl—j+%1(t —f’/—'ﬂ . (36)

Let us pass to the analysis of the second line. Input
of the second line is forced by the wave refracted from
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(35)

the first line into the second one. Refraction coefficient
here is equal

q=1-k=1/2
so, input voltage in cross section 22’ at t=I/V equals
—Ug /2. Final expression for voltage Uy,

1 1) 1 3l
Upp =Ug |1(t) =1 t—— [+=1| t——|]. 37
22 o{()z(sz(vﬂ @37
Resulted pulse voltage on the line load is

]

Corresponding time diagram is shown in Fig. 13.
]
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Fig. 13. Forming output pulse of the Blumlein line
a) first line output; b) second line input;
c) voltage on the load

The result can be verified by calculating the energy
balance in the system. Thus, the initial energy reserve was

W, =Cl U3.
The only dissipative element in the system is the

load resistance. The energy released in it in the form of
Joule heat is

® 2081

Wy = —— [ uPdt = =20
224 2Z\V
As you can see, the results obtained coincide.
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MOJEJNPOBAHUE PEXKUMOB B UMITYJIbCHBIX ®OPMUPYIOIINX JIMHUSIX OIIEPATOPHBIM METO/IOM
B.U. Yymakoe, I0.®. JIonun, O.H. Xapuenko

PaccmoTpeno nmpumMenenne npeoOpasoBanus Jlamaca Uit aHanu3a Ienel ¢ paclpeneleHHbIME apaMeTpamMu. B kadectse
IIpUMepa aHAIU3UPYIOTCS HMITYJIbCHBIE (POPMUPYIOIIHE JIMHUH. Takue ycTpOHCTBA IMIMPOKO NPUMEHSIOTCS B HJIEKTPOHUKE, BBI-
COKOBOJIBTHOM TEXHHKE M CHJIIbHOTOYHBIX YCKOPHUTENAX 3apsDKEHHBIX YacTHIl. B NpHUBEIEHHBIX IPUMEpax pacCMaTPUBAIOTCS KaK
KJIACCHYECKHE METO/bl perieHus auddepeHnaibHbIX ypaBHEHHI B YaCTHBIX IIPOM3BOAHBIX: MeTo] Dypre u Meton JJanambepa
(MeTon OmyXIalOUIMX BOJH), TAaK U METOJ, OCHOBAaHHBIA Ha mpeoOpa3osanuu Jlamnaca nepuonudeckoit ¢pynkuun. [Iposeneno
JIeTalIbHOE pPeIIeHue 3a/1a9i (OpMUPOBAHHS MMITYJILCOB HANPSDKEHHS C WCIIOJIb30BAaHHUEM CXEM C PaclpeAeTeHHBIMH HapaMeT-
pamu. IToxaszaHo, uTo moBTOpHOE NpeoOpa3oBanue Jlammaca mMo3BoIseT MEPEHTH OT ypaBHEHUH B YaCTHBIX NPOM3BOAHBIX K all-
redpanvecKkyM ypaBHEHHUSIM U YIPOCTHUTH pemieHne mpobieMsl. [IpuBoasTcs BpeMeHHBIE AMarpaMMEI IIPOIECCOB 3apsia U pas-
psiia IMHUM JUIS pa3iIMIHBIX Harpy30K.

MOJEJIOBAHHSI PEXKUMIB B IMITYJIbCHUX @OPMYIOUYHUX JIHIAX OIEPATOPHUM METOA0OM
B.I. Uymakos, 10.®. Jlonin, O.1. Xapuenko

PosrasHyTo 3acTocyBaHHs meperBopenHs Jlamaca [yl aHalli3y JIAHLIOTIB 3 PO3IOJUICHMMH napamerpaMu. SIK mpukiaj
aHaI3YIOThCS IMITyJbCHI (opmyroui inii. Taki mpUCTpPol HIMPOKO 3aCTOCOBYIOTHCSI B €IEKTPOHIL, BUCOKOBOJBTHIH TEXHIKH i
CHJIBHOCTPYMOBHX HPHCKOPIOBAaYaX 3apsUKEHMX YaCTHHOK. Y HABEICHMX IPUKIANAX PO3TIINAIOTHCS SIK KJIACHYHI METOH
Po3B’s13aHHS MU(EPEeHIIHHIX PIBHIHD y YaCTKOBHUX MOXigHUX: MeTox Dyp'e i merox Hamambepa (MeTox OIyKaroUMX XBHIIb), TaK
1 MeToJI, 3acCHOBaHMI Ha meperBopeHHi Jlamraca mepioguunoi ¢ynkuii. [IpoBeneHo neranpHEe po3B’s3aHHSA 3a1adi HOPMyBaHHS
IMITyJIBCIB HAaNpyru 3 BUKOPHCTAHHAM CXEM 3 PO3NOALICHUMH Napamerpamu. [TokasaHo, 1110 MOBTOpHE neperBopeHHs Jlamiaca
JI03BOJISIE IEPEUTH Bijl PIBHSAHD y MPHUBATHHUX MOXIMHHUX 10 anreOpaidHuX piBHIHB i CIIPOCTUTH PO3B’si3aHHs 3a4a4i. HaBoasTecs
4acoBi JiarpaMu MPOLECiB 3apsay i po3psiay JMiHil 1Sl pi3HUX HaBAHTaXKEHb.
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