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Abstract − The implementation of a system for analyzing 
circuits with respect to their path-delay fault testability is 
presented. It includes a path-delay fault simulator, and an 
ATPG for path-delay faults combined into a test tool. The test 
tool is used to evaluate the performance of several different 
test vector generators. The test generators exploit weighted 
pseudo-random stimuli generation, based on arithmetic BIST 
and SIC patterns. The main goal is to find efficient heuristics 
that improves path-delay fault detection efficiency in terms of 
test time. We show that weighted ABIST stimuli are 
productive for detecting the K-longest path-delay faults for 
most circuits. On the average, we obtained fault coverage of 
92.6% for the 20.000 longest paths on iscas’85 circuits. 

Index Terms − Built-in testing, Fault diagnosis, Automatic 
testing. 

I. INTRODUCTION 
efect oriented testing is gaining attention, and Path 
Delay Fault (PDF) testing is one of the more 
challenging problems to study [9]. The test method 

toolbox has expanded significantly over the last decade. 
Various trade-offs on test methodology, test quality 
(measured by various fault coverage metrics), design-for-
test development costs, silicon overhead, and cost of 
Automatic Test Equipment, including test application time, 
are performed.  

For PDF testing, deterministic test pattern pairs, or Built-
In Self-Test (BIST) generated patterns may be exploited. 
We have chosen to explore the possible usage of BIST 
methods. This paper describes the implementation of a 
system for analyzing circuits with respect to their path-
delay fault testability. The system includes a path-delay 
fault simulator, and an Automatic Test Pattern Generator 
(ATPG) for path-delay faults, combined into a test tool. The 
test tool is used to evaluate the performance of different test 
vector generators that may be used in various BIST 
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arrangements. The test generators exploit weighted pseudo-
random stimuli generation, based on arithmetic BIST 
principles. We show that this is a viable BIST method for 
detecting the K-longest path-delay faults with satisfactory 
PDF coverage for many circuits, but not for all circuits. We 
employ the tool on iscas’85 circuits. Our focus is on the 
methodology, not on specific stimuli generators. We 
envision the use of compact software programs, like 
published [8], to be loaded into the system under test.  An 
in-depth presentation of this test project is found in [5]. 
 

 

Fig. 1. c17 with one of its paths highlighted 

II. PATH DELAY FAULT SIMULATION MODEL 
The path-delay fault model was proposed by Smith [9]. A 

definition of the path-delay fault model from [1] is: 
The delay defect in the circuit is assumed to cause the 

cumulative delay of a combinational path to exceed some 
specified duration. The combinational path begins at a 
primary input or a clocked flip-flop, contains a connected 
chain of gates, and ends at a primary output or a clocked 
flip-flop. The specified time duration can be the duration of 
the clock period (or phase), or the vector period. The 
propagation delay is the time that a signal event (transition) 
takes to traverse the path. Both switching delays of devices 
and transport delays of interconnects on the path contribute 
to the propagation delay.  

There are two path-delay faults associated with each 
physical path in the circuit: slow-to-rise, and slow-to-fall. 
Fig. 1 shows one path. The path-delay fault model has the 
ability to detect distributed defects caused by statistical 
process variations. A test for a path-delay fault will also 
detect any spot defects along the path. The number of paths, 
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and thus path-delay faults, may be exponential in the 
number of gates in the circuit. 

The selection of proper simulation algebra (alphabet and 
logic rules) is crucial for any logic/fault simulator. Our 
simulator PDFSim uses the 6-valued algebra developed by 
[9]. Several features to obtain an efficient simulator are 
presented in [5], see also [4]. Of course, a two-pattern test 
vector is needed for delay fault testing. We adopt SIC 
(Single Input Change) vectors, because it was shown in 
[11] that such vectors are more effective than Multiple 
Input Change vectors for robust and non-robust testing. 

III. AUTOMATIC TEST PATTERN GENERATION 
It is intractable to test all path-delay faults in a circuit. 

There are nearly 1020 paths in one of the iscas’85 circuits! 
One accepted strategy is to test a subset of all possible path 
delay faults. The longest testable paths are of particular 
importance for high quality delay testing. An algorithm for 
extracting the K-longest testable path-delay faults (K-LT-
PDF) in a circuit has been developed, and integrated with 
the fault simulator. The test generators employed will be 
evaluated against the fault lists containing K-LT-PDF. 

The earliest attempts at creating an ATPG that could 
extract the K-LT-PDF were very inefficient. ATPGs 
normally employed two separate phases. Usually, a lot of 
paths are untestable, and a structural path extractor would 
find and pass a lot of untestable paths to the test generator. 
Fortunately, by combining the structural path extractor and 
the test generator, it is possible to prune the search space 
significantly by sorting out untestable sets of paths at an 
early stage. This approach was originally used by Qiu and 
Walker [12]. We have introduced several improvements in 
terms of efficiency, including recursive learning [6], and 
FAN-like [3] justifications. Recursive learning is a method 
for extracting all logical dependencies between signals in a 
circuit, and to perform precise implications for a given set 
of value assignments. 

IV. BIST-BASED STIMULI GENERATORS 

A. Basis Vectors 
First, we wanted to investigate whether ABIST 

generators of a simple kind, namely accumulator based 
stimuli generators, would provide sufficient basis for 
pseudo-random patterns. In particular, the generator 
described in [8] was investigated: 

 
Ai = Ai-1 + C  (mod 2n), A0=I,   i=1,2,3, …, V          (1) 

 
By carefully selecting the parameters C and I, one may 

exhaustively cover every subinterval of size r within the 
first 2r test vectors. This generator may be implemented as a 
compact software program in a micro controller. It will 
generate uniformly distributed values. Let us call these 
patterns UDB (Uniformly Distributed Basis) patterns.  

But are these generated values of adequate statistical 
quality? We compared the generator against a Mersenne 

Twister (MT) generator [7]. This generator is considered as 
an excellent benchmark for uniformly generated 
pseudorandom numbers. But it is much more complex to 
implement in SW or HW. The simple ABIST generator 
given in (1) was not as efficient. But by combining three 
generators of type (1), and proper weighting, we developed 
a better basis, called GAU (U –for uniform). This generator 
yields considerably shorter test application times than a 
Mersenne-based generator will.  

The rationale behind the use of weighted test patterns is 
as follows: consider Fig. 1. For a path to be sensitized from 
input to output, proper controlling values must be applied to 
the inputs not included in the path. We are looking for 
ABIST patterns that exhibit statistical properties inductive 
to fault detection. It is known that proper weighting of input 
values, i.e. non-uniform distribution of ones and zeros, 
might enhance the efficiency of fault detection. 

Thus, we devised various schemes for weighting the 
random patterns. These schemes employed the basic 
generator, with added features for weighing. Transitions on 
input pins were generated by so-called Single Input Change 
(SIC) vectors. From a basis vector, we toggle one bit at a 
time to obtain two-pattern test vectors. For an N-input 
circuit, 2N vectors are generated this way.  

First, we define the GA1 generator: use of the GAU 
generator, and SIC vectors. This yields a uniform 
generator, which we will compare potential weighting 
heuristics against.  

B. GA2: stuck-at test set weights 
Weights are based on a deterministic test set (obtained 

from a commercial ATPG) for stuck-at faults. For each 
input pin, we counted the relative number of ones and 
zeros, and used these numbers as weights. Don’t cares were 
counted in both the one and the zero set. Basis vectors are 
generated from (1), with r=16, and three sets of (C, I) 
values. 

The rationale is that these patterns have contributed to 
controlling values on the inputs for efficient stuck-at fault 
detection, and may be promising as candidates for path 
delay fault testing as well. 

C. GA3: counting based weights 
Weights are generated based on fault coverage 

measurements. The circuit is first fed from a pseudo-
random generator of type GA1. Two counters (S0Ctr, 
S1Ctr) are associated with each input. These counters store 
the number of path-delay faults detected when the input has 
a stable value (S0 or S1). When a predetermined number of 
basis patterns (10M) has been applied, the weighting factors 
can be computed for every input according to:  

 
p0 = S0Ctr/(S1Ctr + S0Ctr),  (2) 
p1 = S1Ctr/(S1Ctr + S0Ctr).  (3) 

 
Subsequently, we rerun the fault simulator with these 

weights. This yields the generator GA3. This heuristic is 
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inspired from the fact that patterns with more weight on the 
HIGH value are productive for AND/NAND gate testing. 

Notice that the counting is not activated before 100 basis 
patterns have been applied. This will leave out the easy-to-
detect faults. These faults will be detected anyway. 

D. GA4 and GA5 
Two less successful schemes were GA4 and GA5. GA4: 

similar to GA2, but weights were computed with 
“reseeding”. One output pin at a time was considered when 
recording fault detection of a test vector. The weight set 
was recomputed once for every output pin. 

GA5 is similar to GA4, but the sequence of seeds was 
optimized somehow. 

E. GA6: weights based on deterministic tests 
Similar to GA2, except that weights are generated based 

on a deterministic test set for path-delay faults. First, a test 
set for the 20.000 longest paths of non-robust faults was 
generated. Then, for each pin, we computed the ratio of 
ones (zeros) that occurred in the complete test set. Don’t 
cares were counted twice, both as 0 and 1. These values 
were used as weights throughout the experiment, similar to 
GA3 above. 

V. EXPERIMENTS 
Armed with the tools and generators described above, 

several experimental runs were set up.  

A. Benchmark circuit properties 
Circuits from the iscas’85 benchmark suite were engaged 

in the experiments presented below. Some information 
about each circuit is provided in this section. 

The number of inputs (I), outputs (O), gates (G), logical 
levels (L) and physical paths (P) for each circuit is shown in 
Table 1 (the two last columns will be discussed in Section 
5.2.1). The number of paths is much larger than the stuck-at 
fault set. Notice in particular the huge number of paths for 
benchmark c6288 (a 16x16 bit array multiplier). 

The circuits c432 and c499 are omitted from most of the 
experiments because they contain XOR-gates, which are 
not currently supported by the ATPG. Another circuit that 
is omitted from most experiments is c6288. The large 
number of paths in this circuit causes problems for both the 
simulator and the ATPG. C17 is discarded for its simplicity. 
The rest of the benchmarks are used in all experiments. 

 

TABLE 1 
BENCHMARK PROPERTIES 

Circuit I /O G/L  P UB PF 
c880 60/26  469/25   8642 16652 16652 
c1355 41/32  619/25   4173216 1110076 20000 
c1908 33/25  938/41   729057 355197 20000 
c2670 233/140  1566/33   679960 1306884 20000 
c3540 50/22  1741/48   28676671 12330969 20000 
c5315 178/123  2608/50 1341305 353300 20000 
c6288 32/32 2480/125  10**20 - - 
c7552 207/108  3827/44 726494 282752 20000 
 

B. Experimental results 
This section presents some statistical properties of the 

sequences generated by the different test generators 
described in Section 4. This information can be used as an 
aid in the interpretation of the results. 

 
EX1: Find the K-longest testable paths 

The objective of this experiment was to find the longest 
non-robust testable paths of each benchmark circuit, which 
was done by using the ATPG tool described in Section 3. 
Provided unlimited time and memory, the tool would list all 
testable faults in each circuit. Unfortunately, some of the 
circuits contain a huge number of testable path-delay faults, 
and this would cause the size of the data structure inside the 
ATPG tool to blow up. In order to keep the whole path 
store inside computer memory, the size of the path store 
was set to a maximum of 1M. The ATPG was asked to find 
the 20.000 longest non-robust testable paths in each of the 
benchmarks. The number of such paths found (PF) for the 
different circuits are listed in the last column of Table 1, 
together with an upper bound (UB) [2] of all non-robust 
path delay faults. Since all circuits except c880 contain 
more than 20.000 testable paths, the ATPG had no problem 
finding 20.000 testable paths. It is reassuring to notice that 
the upper bound of c880 from [2] coincides with the 
number of paths we found. 

 
EX2: Determine no. of paths detected by unweighted 
pseudo-random stimuli 

In this experiment test vectors were applied, and the 
number of detected path-delay faults and their length were 
logged. The test vectors were generated with an unweighted 
Mersenne Twister pseudo-random generator (GT1). The 
purpose was to obtain information about the number of 
paths of different lengths detected by a standard 
pseudorandom generator. Typical results are presented in 
Figure 2.   
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Fig 2. No. of detected paths vs. path length for various no. of test vectors 

 
The longer paths are not as easily detected as the shorter 

paths. This is to be expected; long paths need more 
constraints than shorter paths. 

In fact, we found that for all circuits, a randomly selected 
physical path is longer than the average length of the paths 
detected within 4M test vectors. The average physical path 
was from 9.8% to 72 % longer. Clearly, UDB patterns are 
not effective for detecting the longest PDFs.  

 
EX3: Comparison of GA1 - GA5 

In this experiment the performances of GA1 - GA5 were 
evaluated. The experiment exploited the fault simulator 
described in Section 2. 10M test patterns were simulated for 
each circuit and generator. Each simulation run was 
repeated 10 times with different seeds in order to cover 
statistical variations. Table 2 presents the average number 
of detected faults over 10 trials after 10M applied test 
vectors. 

 
TABLE 2 

DETECTED FAULTS AFTER 10M APPLIED TEST VECTORS 
Circuit GA1 GA2  GA3 GA4 GA5 
c880 8714  16194 16550   16470 16473 
c1355 1050139  1085021 1110297  1110264 1110258 
c1908 269846  283665 349613   349579 349568 
c2670 51739  85948 107711   102734 104141 
c3540 588541  996001 1062718   1050384 1050579 
c5315 173526  309498 339396  339122 339157 
c7552 146754  185983 185687  185264  185383 
Sum 2289259 2962310 3171972 3153817 3155559 
 

The best result, i.e. the highest number of detected faults, 
is shown in bold in Table 2 for each circuit. The stimuli 
generator with the poorest performance is the unweighted 
pseudo-random generator GA1. This generator detected the 
fewest number of non-robust path delay faults in all tests. 
Generator GA2, which is a weighted pseudo-random 
generator with weights based on a deterministic test set for 
stuck-at faults, is somewhat better than GA1. The best 
generators are GA3, GA4, GA5 and GA6.  

The performances of GA3, GA4 and GA5 do not differ 
by much, but the results point in favor of GA3, which 
detects most path-delay faults for all but one benchmark. 
GA3 is a weighted pseudo-random generator with weights 
based on the counting scheme described in Section 4. 

We performed the same experiments with the MT as the 
basic pseudorandom generator. To summarize, the results 
were in general only slightly better than for the ABIST 
generator. For example, the equivalent of GA3 exhibited a 
total improvement (summed over all circuits) of 0.12% 
more detected path delay faults. 

 
EX4: Weighted pseudo-random patterns to find the K-longest 
testable path-delay faults 

The purpose of this experiment was to find out if proper 
weighting of pseudorandom stimuli, based on K=20.000 
deterministic test patterns for path-delay faults, would yield 
more efficient path delay tests than using uniformly 
distributed patterns. The experiments were conducted as 
follows: 

First, the K=20.000 longest testable path-delay faults 
were extracted for each circuit as described in EX1. For 
each detected path, the path number was stored in a file 
together with the corresponding path length and test vector. 
Weights for GA6 and GT6 were then extracted based on 
each test set as described in Section 4. Notice that 
generators labeled GTi refers to the use of  Mersenne 
Twister random numbers, but with same heuristics as the 
corresponding GAi ( i= 1-6). 

Prior to each simulation run a fault list with the 20.000 
longest testable path delay faults was uploaded to the 
simulator. 10M single-input-change test patterns were then 
applied to each circuit for each generator. Each simulation 
run was repeated 10 times with different seeds in order to 
cover statistical variations. Six different generators were 
used: GA1, GA3, GA6, GT1, GT3 and GT6. 

The three generators GA1, GA3 and GA6 are using the 
exact same underlying accumulator based pseudo-random 
generator. GA3 and GA6 are weighted pseudo-random 
generators, and will be compared against GA1 (uniform 
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weights). The three generators GT1, GT3 and GT6 are 
using the exact same underlying MT pseudo-random 
generator. GT3 and GT6 are weighted pseudo-random 

generators, and will be compared against GT1 (uniform 
weights). 

 
Fig 3. Typical curves of fault detection vs. no. of test vectors applied 

 
Two measures were recorded: 
Fault coverage in relation to the size (K) of the fault list. 

(K=20000 for all circuits except c880 which contains only 
16652 non-robust testable paths). 

Test time speedup, defined as the ratio: 
                  Rimp(methx)=NTP(uniform)/NTP(methx),        (4) 
where NTP represents the number of test patterns. The 
name of the stimuli generator is used as argument (methx). 

 
TABLE 3 

FAULT COVERAGE, FC, OF BEST METHOD AFTER 10M APPLIED TEST 
VECTORS 

Circuit FC(GAx) 
c880 99.3% (GA3) 
c1355 100% (GA3) 
c1908 97.6% (GA3) 
c2670 67.9% (GA6) 
c3540 86.9% (GA6) 
c5315 96.7% (GA6) 
c7552 99.8% (GA3) 
Average 92.6% 

 
During simulation the fault coverage, FC, was sampled 

from time to time until 10M test patterns had been applied. 
Figure 3 shows two typical curves of fault detection vs. no. 
of test vectors applied. The lowest curves represent 
unweighted stimuli, while the other curves are given for 
four different weighting schemes. The improvements are 
notable for GA3 and GA5.  

Table 3 shows the fault coverage after 10M test vectors. 
The numbers in the second column represent fault coverage 
achieved with the best generator of GA3 and GA6. 

We observed that the GT methods are slightly better than 
the GA methods. Furthermore, 5 out of 7 circuits attain 
97.6% fault coverage, or more. Two circuits exhibit inferior 
fault coverage, and need more test patterns or other 
methods of path-delay fault detection.  

As mentioned, similar experiments were carried out with 
the MT as the basic pseudorandom generator, in order to 

check possible improvement when using a more 
authoritative pseudorandom generator. These generators are 
called GT1-GT6. The MT resulted only in slight 
improvements. The average fault coverage increased from 
92.6% to 93.6%. 

The standard deviation of the sample fault coverage after 
10M applied test patterns over the 10 trials was also 
computed. It varied from 0% to 1.5%. Thus, the seed value 
does not influence the outcome much.  

C. Test time speedup 
One important goal in testing is the ability to obtain a 

desired test quality for less cost. In our case, test time, i.e. 
no. of test vectors to be applied for a given test quality, 
should be kept at a minimum. In order to measure the 
speedup of a weighted generator over that of a uniformly 
distributed pseudo-random generator, one can compare the 
number of test vectors needed in order to achieve the same 
fault coverage. The target coverage in our case was set to 
the fault coverage attained with the unweighted generator 
after application of 10M stimuli. The improvement factors 
of the best-weighted generator over uniformly distributed 
stimuli, defined in (4), are listed in Table 4. 

 
TABLE 4 

TIME SPEEDUP OF BEST METHOD OVER UNIFORMLY DISTRIBUTED STIMULI 
Circuit Rimp(GAx) Rimp(GTx) 
c880 11.9  15.1 
c1355 1.5  2.7 
c1908 8.0  10.8 
c2670 10.7  14.3 
c3540 7.1  9.1 
c5315 4.7  7.0 
c7552 1.0  1.0 

 
We observe time speedups from nothing to a factor 11.9 

(GA) or 15.1 (GT)! However, it is unfortunately not 
possible to devise an a priori metric that may predict 
speedup. But given the potential of substantial savings in 
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test time, and thus savings of test cost, it can be 
recommended to experiment with GA3 and GA6 for a 
newly designed circuit, and use this method whenever 
beneficial. 

6. CONCLUSION 
A system for analyzing circuits with respect to their path-

delay fault testability has been presented. It includes a path-
delay fault simulator, and an ATPG for path-delay faults 
combined into a test tool. This tool was used to evaluate the 
performance of different test vector generators for various 
BIST arrangements. The test generators exploit weighted 
pseudo-random stimuli generation, based on arithmetic 
BIST principles. We did find useful heuristics that improve 
path-delay fault efficiency in terms of test time. We showed 
that weighted ABIST stimuli are productive for detecting 
the K-longest path-delay faults for many circuits. On the 
average, we obtained fault coverage of 92.6% for the 
20.000 longest paths on a subset of iscas’85 circuits. We 
observed time speedups from nothing to a factor 12 with the 
accumulator based stimuli generator, making it well worth 
the effort of experimenting with such methods for potential 
high quality path-delay fault testing. However, it should be 
noted that our methods do not always give significant 
improvements, and are not generally applicable.  

Future work would involve using the simulator and the 
ATPG to create better generators based upon knowledge 
about the structure of the circuit. We might also investigate 
the influence the number of longest paths will have on the 
test quality obtainable. 
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