
Enhancing Path Delay Fault Coverage
by Weighted Pseudorandom Test Generation

Øystein Gjermundnes, Einar J. Aas

Abstract − The implementation of a system for analyzing
circuits with respect to their path-delay fault testability is
presented. It includes a path-delay fault simulator, and an
ATPG for path-delay faults combined into a test tool. The test
tool is used to evaluate the performance of several different
test vector generators. The test generators exploit weighted
pseudo-random stimuli generation, based on arithmetic BIST
and SIC patterns. The main goal is to find efficient heuristics
that improves path-delay fault detection efficiency in terms of
test time. We show that weighted ABIST stimuli are
productive for detecting the K-longest path-delay faults for
most circuits. On the average, we obtained fault coverage of
92.6% for the 20.000 longest paths on iscas’85 circuits.

Index Terms − Built-in testing, Fault diagnosis, Automatic
testing.

I. INTRODUCTION
efect oriented testing is gaining attention, and Path
Delay Fault (PDF) testing is one of the more
challenging problems to study [9]. The test method

toolbox has expanded significantly over the last decade.
Various trade-offs on test methodology, test quality
(measured by various fault coverage metrics), design-for-
test development costs, silicon overhead, and cost of
Automatic Test Equipment, including test application time,
are performed.

For PDF testing, deterministic test pattern pairs, or Built-
In Self-Test (BIST) generated patterns may be exploited.
We have chosen to explore the possible usage of BIST
methods. This paper describes the implementation of a
system for analyzing circuits with respect to their path-
delay fault testability. The system includes a path-delay
fault simulator, and an Automatic Test Pattern Generator
(ATPG) for path-delay faults, combined into a test tool. The
test tool is used to evaluate the performance of different test
vector generators that may be used in various BIST

Manuscript received February 4, 2008.
The work was done while Gjermundnes was affiliated with NTNU.
Øystein Gjermundnes with the ARM Norway, PBox N-2182, NO-7412
Trondheim Norway, e-mail: oystein.gjermundnes@arm.com
Einar J. Aas with the Norwegian University of Science and Technology –
NTNU, NO-7491 Trondheim, Norway, e-mail: ejaas@iet.ntnu.no

arrangements. The test generators exploit weighted pseudo-
random stimuli generation, based on arithmetic BIST
principles. We show that this is a viable BIST method for
detecting the K-longest path-delay faults with satisfactory
PDF coverage for many circuits, but not for all circuits. We
employ the tool on iscas’85 circuits. Our focus is on the
methodology, not on specific stimuli generators. We
envision the use of compact software programs, like
published [8], to be loaded into the system under test. An
in-depth presentation of this test project is found in [5].

Fig. 1. c17 with one of its paths highlighted

II. PATH DELAY FAULT SIMULATION MODEL
The path-delay fault model was proposed by Smith [9]. A

definition of the path-delay fault model from [1] is:
The delay defect in the circuit is assumed to cause the

cumulative delay of a combinational path to exceed some
specified duration. The combinational path begins at a
primary input or a clocked flip-flop, contains a connected
chain of gates, and ends at a primary output or a clocked
flip-flop. The specified time duration can be the duration of
the clock period (or phase), or the vector period. The
propagation delay is the time that a signal event (transition)
takes to traverse the path. Both switching delays of devices
and transport delays of interconnects on the path contribute
to the propagation delay.

There are two path-delay faults associated with each
physical path in the circuit: slow-to-rise, and slow-to-fall.
Fig. 1 shows one path. The path-delay fault model has the
ability to detect distributed defects caused by statistical
process variations. A test for a path-delay fault will also
detect any spot defects along the path. The number of paths,

D

R&I, 2008, No 1 13

and thus path-delay faults, may be exponential in the
number of gates in the circuit.

The selection of proper simulation algebra (alphabet and
logic rules) is crucial for any logic/fault simulator. Our
simulator PDFSim uses the 6-valued algebra developed by
[9]. Several features to obtain an efficient simulator are
presented in [5], see also [4]. Of course, a two-pattern test
vector is needed for delay fault testing. We adopt SIC
(Single Input Change) vectors, because it was shown in
[11] that such vectors are more effective than Multiple
Input Change vectors for robust and non-robust testing.

III. AUTOMATIC TEST PATTERN GENERATION
It is intractable to test all path-delay faults in a circuit.

There are nearly 1020 paths in one of the iscas’85 circuits!
One accepted strategy is to test a subset of all possible path
delay faults. The longest testable paths are of particular
importance for high quality delay testing. An algorithm for
extracting the K-longest testable path-delay faults (K-LT-
PDF) in a circuit has been developed, and integrated with
the fault simulator. The test generators employed will be
evaluated against the fault lists containing K-LT-PDF.

The earliest attempts at creating an ATPG that could
extract the K-LT-PDF were very inefficient. ATPGs
normally employed two separate phases. Usually, a lot of
paths are untestable, and a structural path extractor would
find and pass a lot of untestable paths to the test generator.
Fortunately, by combining the structural path extractor and
the test generator, it is possible to prune the search space
significantly by sorting out untestable sets of paths at an
early stage. This approach was originally used by Qiu and
Walker [12]. We have introduced several improvements in
terms of efficiency, including recursive learning [6], and
FAN-like [3] justifications. Recursive learning is a method
for extracting all logical dependencies between signals in a
circuit, and to perform precise implications for a given set
of value assignments.

IV. BIST-BASED STIMULI GENERATORS

A. Basis Vectors
First, we wanted to investigate whether ABIST

generators of a simple kind, namely accumulator based
stimuli generators, would provide sufficient basis for
pseudo-random patterns. In particular, the generator
described in [8] was investigated:

Ai = Ai-1 + C (mod 2n), A0=I, i=1,2,3, …, V (1)

By carefully selecting the parameters C and I, one may

exhaustively cover every subinterval of size r within the
first 2r test vectors. This generator may be implemented as a
compact software program in a micro controller. It will
generate uniformly distributed values. Let us call these
patterns UDB (Uniformly Distributed Basis) patterns.

But are these generated values of adequate statistical
quality? We compared the generator against a Mersenne

Twister (MT) generator [7]. This generator is considered as
an excellent benchmark for uniformly generated
pseudorandom numbers. But it is much more complex to
implement in SW or HW. The simple ABIST generator
given in (1) was not as efficient. But by combining three
generators of type (1), and proper weighting, we developed
a better basis, called GAU (U –for uniform). This generator
yields considerably shorter test application times than a
Mersenne-based generator will.

The rationale behind the use of weighted test patterns is
as follows: consider Fig. 1. For a path to be sensitized from
input to output, proper controlling values must be applied to
the inputs not included in the path. We are looking for
ABIST patterns that exhibit statistical properties inductive
to fault detection. It is known that proper weighting of input
values, i.e. non-uniform distribution of ones and zeros,
might enhance the efficiency of fault detection.

Thus, we devised various schemes for weighting the
random patterns. These schemes employed the basic
generator, with added features for weighing. Transitions on
input pins were generated by so-called Single Input Change
(SIC) vectors. From a basis vector, we toggle one bit at a
time to obtain two-pattern test vectors. For an N-input
circuit, 2N vectors are generated this way.

First, we define the GA1 generator: use of the GAU
generator, and SIC vectors. This yields a uniform
generator, which we will compare potential weighting
heuristics against.

B. GA2: stuck-at test set weights
Weights are based on a deterministic test set (obtained

from a commercial ATPG) for stuck-at faults. For each
input pin, we counted the relative number of ones and
zeros, and used these numbers as weights. Don’t cares were
counted in both the one and the zero set. Basis vectors are
generated from (1), with r=16, and three sets of (C, I)
values.

The rationale is that these patterns have contributed to
controlling values on the inputs for efficient stuck-at fault
detection, and may be promising as candidates for path
delay fault testing as well.

C. GA3: counting based weights
Weights are generated based on fault coverage

measurements. The circuit is first fed from a pseudo-
random generator of type GA1. Two counters (S0Ctr,
S1Ctr) are associated with each input. These counters store
the number of path-delay faults detected when the input has
a stable value (S0 or S1). When a predetermined number of
basis patterns (10M) has been applied, the weighting factors
can be computed for every input according to:

p0 = S0Ctr/(S1Ctr + S0Ctr), (2)
p1 = S1Ctr/(S1Ctr + S0Ctr). (3)

Subsequently, we rerun the fault simulator with these

weights. This yields the generator GA3. This heuristic is

14 R&I, 2008, No 1

inspired from the fact that patterns with more weight on the
HIGH value are productive for AND/NAND gate testing.

Notice that the counting is not activated before 100 basis
patterns have been applied. This will leave out the easy-to-
detect faults. These faults will be detected anyway.

D. GA4 and GA5
Two less successful schemes were GA4 and GA5. GA4:

similar to GA2, but weights were computed with
“reseeding”. One output pin at a time was considered when
recording fault detection of a test vector. The weight set
was recomputed once for every output pin.

GA5 is similar to GA4, but the sequence of seeds was
optimized somehow.

E. GA6: weights based on deterministic tests
Similar to GA2, except that weights are generated based

on a deterministic test set for path-delay faults. First, a test
set for the 20.000 longest paths of non-robust faults was
generated. Then, for each pin, we computed the ratio of
ones (zeros) that occurred in the complete test set. Don’t
cares were counted twice, both as 0 and 1. These values
were used as weights throughout the experiment, similar to
GA3 above.

V. EXPERIMENTS
Armed with the tools and generators described above,

several experimental runs were set up.

A. Benchmark circuit properties
Circuits from the iscas’85 benchmark suite were engaged

in the experiments presented below. Some information
about each circuit is provided in this section.

The number of inputs (I), outputs (O), gates (G), logical
levels (L) and physical paths (P) for each circuit is shown in
Table 1 (the two last columns will be discussed in Section
5.2.1). The number of paths is much larger than the stuck-at
fault set. Notice in particular the huge number of paths for
benchmark c6288 (a 16x16 bit array multiplier).

The circuits c432 and c499 are omitted from most of the
experiments because they contain XOR-gates, which are
not currently supported by the ATPG. Another circuit that
is omitted from most experiments is c6288. The large
number of paths in this circuit causes problems for both the
simulator and the ATPG. C17 is discarded for its simplicity.
The rest of the benchmarks are used in all experiments.

TABLE 1
BENCHMARK PROPERTIES

Circuit I /O G/L P UB PF
c880 60/26 469/25 8642 16652 16652
c1355 41/32 619/25 4173216 1110076 20000
c1908 33/25 938/41 729057 355197 20000
c2670 233/140 1566/33 679960 1306884 20000
c3540 50/22 1741/48 28676671 12330969 20000
c5315 178/123 2608/50 1341305 353300 20000
c6288 32/32 2480/125 10**20 - -
c7552 207/108 3827/44 726494 282752 20000

B. Experimental results
This section presents some statistical properties of the

sequences generated by the different test generators
described in Section 4. This information can be used as an
aid in the interpretation of the results.

EX1: Find the K-longest testable paths

The objective of this experiment was to find the longest
non-robust testable paths of each benchmark circuit, which
was done by using the ATPG tool described in Section 3.
Provided unlimited time and memory, the tool would list all
testable faults in each circuit. Unfortunately, some of the
circuits contain a huge number of testable path-delay faults,
and this would cause the size of the data structure inside the
ATPG tool to blow up. In order to keep the whole path
store inside computer memory, the size of the path store
was set to a maximum of 1M. The ATPG was asked to find
the 20.000 longest non-robust testable paths in each of the
benchmarks. The number of such paths found (PF) for the
different circuits are listed in the last column of Table 1,
together with an upper bound (UB) [2] of all non-robust
path delay faults. Since all circuits except c880 contain
more than 20.000 testable paths, the ATPG had no problem
finding 20.000 testable paths. It is reassuring to notice that
the upper bound of c880 from [2] coincides with the
number of paths we found.

EX2: Determine no. of paths detected by unweighted
pseudo-random stimuli

In this experiment test vectors were applied, and the
number of detected path-delay faults and their length were
logged. The test vectors were generated with an unweighted
Mersenne Twister pseudo-random generator (GT1). The
purpose was to obtain information about the number of
paths of different lengths detected by a standard
pseudorandom generator. Typical results are presented in
Figure 2.

R&I, 2008, No 1 15

Fig 2. No. of detected paths vs. path length for various no. of test vectors

The longer paths are not as easily detected as the shorter

paths. This is to be expected; long paths need more
constraints than shorter paths.

In fact, we found that for all circuits, a randomly selected
physical path is longer than the average length of the paths
detected within 4M test vectors. The average physical path
was from 9.8% to 72 % longer. Clearly, UDB patterns are
not effective for detecting the longest PDFs.

EX3: Comparison of GA1 - GA5

In this experiment the performances of GA1 - GA5 were
evaluated. The experiment exploited the fault simulator
described in Section 2. 10M test patterns were simulated for
each circuit and generator. Each simulation run was
repeated 10 times with different seeds in order to cover
statistical variations. Table 2 presents the average number
of detected faults over 10 trials after 10M applied test
vectors.

TABLE 2

DETECTED FAULTS AFTER 10M APPLIED TEST VECTORS
Circuit GA1 GA2 GA3 GA4 GA5
c880 8714 16194 16550 16470 16473
c1355 1050139 1085021 1110297 1110264 1110258
c1908 269846 283665 349613 349579 349568
c2670 51739 85948 107711 102734 104141
c3540 588541 996001 1062718 1050384 1050579
c5315 173526 309498 339396 339122 339157
c7552 146754 185983 185687 185264 185383
Sum 2289259 2962310 3171972 3153817 3155559

The best result, i.e. the highest number of detected faults,
is shown in bold in Table 2 for each circuit. The stimuli
generator with the poorest performance is the unweighted
pseudo-random generator GA1. This generator detected the
fewest number of non-robust path delay faults in all tests.
Generator GA2, which is a weighted pseudo-random
generator with weights based on a deterministic test set for
stuck-at faults, is somewhat better than GA1. The best
generators are GA3, GA4, GA5 and GA6.

The performances of GA3, GA4 and GA5 do not differ
by much, but the results point in favor of GA3, which
detects most path-delay faults for all but one benchmark.
GA3 is a weighted pseudo-random generator with weights
based on the counting scheme described in Section 4.

We performed the same experiments with the MT as the
basic pseudorandom generator. To summarize, the results
were in general only slightly better than for the ABIST
generator. For example, the equivalent of GA3 exhibited a
total improvement (summed over all circuits) of 0.12%
more detected path delay faults.

EX4: Weighted pseudo-random patterns to find the K-longest
testable path-delay faults

The purpose of this experiment was to find out if proper
weighting of pseudorandom stimuli, based on K=20.000
deterministic test patterns for path-delay faults, would yield
more efficient path delay tests than using uniformly
distributed patterns. The experiments were conducted as
follows:

First, the K=20.000 longest testable path-delay faults
were extracted for each circuit as described in EX1. For
each detected path, the path number was stored in a file
together with the corresponding path length and test vector.
Weights for GA6 and GT6 were then extracted based on
each test set as described in Section 4. Notice that
generators labeled GTi refers to the use of Mersenne
Twister random numbers, but with same heuristics as the
corresponding GAi (i= 1-6).

Prior to each simulation run a fault list with the 20.000
longest testable path delay faults was uploaded to the
simulator. 10M single-input-change test patterns were then
applied to each circuit for each generator. Each simulation
run was repeated 10 times with different seeds in order to
cover statistical variations. Six different generators were
used: GA1, GA3, GA6, GT1, GT3 and GT6.

The three generators GA1, GA3 and GA6 are using the
exact same underlying accumulator based pseudo-random
generator. GA3 and GA6 are weighted pseudo-random
generators, and will be compared against GA1 (uniform

16 R&I, 2008, No 1

weights). The three generators GT1, GT3 and GT6 are
using the exact same underlying MT pseudo-random
generator. GT3 and GT6 are weighted pseudo-random

generators, and will be compared against GT1 (uniform
weights).

Fig 3. Typical curves of fault detection vs. no. of test vectors applied

Two measures were recorded:
Fault coverage in relation to the size (K) of the fault list.

(K=20000 for all circuits except c880 which contains only
16652 non-robust testable paths).

Test time speedup, defined as the ratio:
 Rimp(methx)=NTP(uniform)/NTP(methx), (4)
where NTP represents the number of test patterns. The
name of the stimuli generator is used as argument (methx).

TABLE 3

FAULT COVERAGE, FC, OF BEST METHOD AFTER 10M APPLIED TEST
VECTORS

Circuit FC(GAx)
c880 99.3% (GA3)
c1355 100% (GA3)
c1908 97.6% (GA3)
c2670 67.9% (GA6)
c3540 86.9% (GA6)
c5315 96.7% (GA6)
c7552 99.8% (GA3)
Average 92.6%

During simulation the fault coverage, FC, was sampled

from time to time until 10M test patterns had been applied.
Figure 3 shows two typical curves of fault detection vs. no.
of test vectors applied. The lowest curves represent
unweighted stimuli, while the other curves are given for
four different weighting schemes. The improvements are
notable for GA3 and GA5.

Table 3 shows the fault coverage after 10M test vectors.
The numbers in the second column represent fault coverage
achieved with the best generator of GA3 and GA6.

We observed that the GT methods are slightly better than
the GA methods. Furthermore, 5 out of 7 circuits attain
97.6% fault coverage, or more. Two circuits exhibit inferior
fault coverage, and need more test patterns or other
methods of path-delay fault detection.

As mentioned, similar experiments were carried out with
the MT as the basic pseudorandom generator, in order to

check possible improvement when using a more
authoritative pseudorandom generator. These generators are
called GT1-GT6. The MT resulted only in slight
improvements. The average fault coverage increased from
92.6% to 93.6%.

The standard deviation of the sample fault coverage after
10M applied test patterns over the 10 trials was also
computed. It varied from 0% to 1.5%. Thus, the seed value
does not influence the outcome much.

C. Test time speedup
One important goal in testing is the ability to obtain a

desired test quality for less cost. In our case, test time, i.e.
no. of test vectors to be applied for a given test quality,
should be kept at a minimum. In order to measure the
speedup of a weighted generator over that of a uniformly
distributed pseudo-random generator, one can compare the
number of test vectors needed in order to achieve the same
fault coverage. The target coverage in our case was set to
the fault coverage attained with the unweighted generator
after application of 10M stimuli. The improvement factors
of the best-weighted generator over uniformly distributed
stimuli, defined in (4), are listed in Table 4.

TABLE 4

TIME SPEEDUP OF BEST METHOD OVER UNIFORMLY DISTRIBUTED STIMULI
Circuit Rimp(GAx) Rimp(GTx)
c880 11.9 15.1
c1355 1.5 2.7
c1908 8.0 10.8
c2670 10.7 14.3
c3540 7.1 9.1
c5315 4.7 7.0
c7552 1.0 1.0

We observe time speedups from nothing to a factor 11.9

(GA) or 15.1 (GT)! However, it is unfortunately not
possible to devise an a priori metric that may predict
speedup. But given the potential of substantial savings in

R&I, 2008, No 1 17

test time, and thus savings of test cost, it can be
recommended to experiment with GA3 and GA6 for a
newly designed circuit, and use this method whenever
beneficial.

6. CONCLUSION
A system for analyzing circuits with respect to their path-

delay fault testability has been presented. It includes a path-
delay fault simulator, and an ATPG for path-delay faults
combined into a test tool. This tool was used to evaluate the
performance of different test vector generators for various
BIST arrangements. The test generators exploit weighted
pseudo-random stimuli generation, based on arithmetic
BIST principles. We did find useful heuristics that improve
path-delay fault efficiency in terms of test time. We showed
that weighted ABIST stimuli are productive for detecting
the K-longest path-delay faults for many circuits. On the
average, we obtained fault coverage of 92.6% for the
20.000 longest paths on a subset of iscas’85 circuits. We
observed time speedups from nothing to a factor 12 with the
accumulator based stimuli generator, making it well worth
the effort of experimenting with such methods for potential
high quality path-delay fault testing. However, it should be
noted that our methods do not always give significant
improvements, and are not generally applicable.

Future work would involve using the simulator and the
ATPG to create better generators based upon knowledge
about the structure of the circuit. We might also investigate
the influence the number of longest paths will have on the
test quality obtainable.

REFERENCES
[1] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for

digital, memory, and mixed signal VLSI circuits”, Kluwer Academic,
New York, 2002.

[2] K. T. Cheng and H. C. Chen, “Delay testing for non-robust untestable
circuits”, Proc. of the International Test Conf., 1993, pp. 954–961.

[3] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms”, IEEE Trans. on Computers, C-32(12), 1983, pp. 1137-
1144.

[4] O. Gjermundnes and E. J. Aas. “Efficient stimuli generators for
detection of path delay faults”, Proc. of the 48th Midwest Symp. on
Circuits and Systems, 2005, pp. 1709–1712.

[5] Ø. Gjermundnes, “Exploiting Arithmetic Built-In Self-Test
Techniques for Path Delay Fault Testing”. Doctoral thesis, 2006,
Norwegian University of Science and Technology, ISBN 82-471-
8257-2.

[6] W. Kunz and D.K. Pradhan, “Recursive learning – a new implication
technique for efficient solutions to cad problems – test, verification,
and optimisation”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 13(9), 1994, pp. 1143-1158.

[7] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator”, ACM Transactions on Modeling and Computer
Simulation, 8(1), 1998, pp. 3–30.

[8] J. Rajski and J. Tyszer, Arithmetic built-in self-test for embedded
systems. Prentice Hall, Upper Saddle River, N.J., 1998.

[9] G. L. Smith. “Model for delay faults based upon paths”, Proc. of the
International Test Conf., 1985, pp. 342–349.

[10] A. Ströle and H.-J. Wunderlich, “TESTCHIP: A chip for weighted
random pattern generation, evaluation, and test control”, IEEE
Journal of Solid State Circuits, Vol. 26, No. 7, 1991, pp. 1056-1063.

[11] A. Virazel et al., ”Delay fault testing. Choosing between random sic
and random mic test sequences”, Journal of Electronic Testing –
Theory and Applications, Vol. 17, No. 3/4, 2001, pp. 233-241.

[12] Q. Wangqi and D. M. H. Walker, “An efficient algorithm for finding
the K longest testable paths through each gate in a combinational
circuit”, Proc. of the International Test Conf., Vol. 1, 2003, pp. 592–
601

18 R&I, 2008, No 1

