
ON THE PROBLEM OF AMBIGUITY OF ELECTROMAGNETIC POTENTIAL 
 
 

A.V. Gritsunov 
Kharkiv National Economical University 

Address: 9a, Lenin Ave., Kharkiv, 61166, Ukraine 
Tel. +380 95 0003502, E-mail gritsunov@gmail.com 

 
 

Introduction 
Theory of electromagnetism is one of the most accomplished parts of the physics and engineering. This 

is demonstrated by successful solutions of many important technical problems with this science. However, new 
progress in technology, especially nanotechnology development, reanimate some “chronic” fundamental 
problems of the electromagnetism like to the Aharonov-Bohm effect [1] interpretation from the position of the 
locality principle; the problem of the electron rest mass; vagueness of the magnetic monopole existence, etc. 

A problem of the electromagnetic potential reality is suspended for a many years. The principal 
argument “contra” is that any Lorentz-invariant gauge of the potential four-vector ( , , , ) { , , , }t x y zA t x y z A A A A=

G
 

[2] does not affect the Lagrange equations, total energy and momentum of a closed electromagnetic system in 
the field formalism. The reason is that all those expressions depend on the electromagnetic field tensor [2], 
which do not vary by the Lorenz gauge. A value that is not defined unambiguously cannot be treated as real. 

On the other hand, the field formalism is unable to explain satisfactorily some recent experiments in the 
electromagnetism, e.g., the Aharonov-Bohm effect. The locality principle cannot be fulfilled if the charged 
quantum particle wave function is considered as depending on electromagnetic field intensity in some distant 
area. Because a self-sufficient potential formalism [3], treating all electromagnetic phenomena as natural or 
forced oscillations of some distributed electromagnetic oscillating system (Minkowski space-time), was recently 
offered, let’s consider what new this can bring in the problem of potential gauge ambiguity. 

 
Main Part 

The Lagrange function for a system of charged particles coupled only with the electromagnetic 
interactions is postulated in the potential formalism [3] using so-called “gradient” hypothesis as 
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where  is the 3D volume of the system;  is the number of particles with rest masses  and charges  
( ) in this system; 

V N 0nm nq
1,2, ,n = … ( ), ( ), ( )n n nx t y t z t  are coordinates of the particles; ( , , , )j t x y z

G
 is the current 

density four-vector; the dot means scalar multiplication of four-vectors: t t x x y y z za b a b a b a b a b⋅ = − − −
GG ; 

{ }/ , / , / , /t x y∇ = ∂ ∂ −∂ ∂ −∂ ∂ −∂ ∂
G

z  is the four-gradient operator; c  is the light velocity; 0μ  is the permeability of 

free space.  is a time coordinate in meters defined as the product of time and c .  is a “mechanical” 
component for the non-interacting particles;  is an “interaction” component coupling the particles with the 
oscillating system;  is a component for the distributed oscillating system (Minkowski space-time) itself. 
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The energy-momentum density tensor [2] [ ] P Iw w w wS⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦  is derived from (1) as consisting 

of the same three “partial” tensors. In particular, the “interaction” energy-momentum density tensor is 
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The distributed electromagnetic oscillating system energy-momentum density tensor components are: 
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where τ  and τ ′  are generic symbols meaning any of the coordinates ; , , ,t x y z [ ]g  is the Minkowski space-time 
unit metric tensor [2]. 

The purpose of this paper is recognition of the limits for the electromagnetic potential gauge ambiguity 
in the potential formalism. The gauge ambiguity consists in permissibility of adding to A

G
 some another four-

vector f∇
G

, where ( , , , )f t x y z  is a relativistic scalar function, and can be expressed in the mathematical form as 

( )A f∇× +∇ ≡ ∇×
G G G G

A
G

, where an antisymmetric tensor 
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is interpreted as a four-curl of the four-vector aG . An addition condition 0A∇⋅ =
G G

 is imposed by obligatory for 
any relativistic-invariant system Lorenz gauge. As 2∇⋅∇ = ∇

G G
, this results in a homogeneous wave equation 

2 0 .f∇ =                                                                              (4) 

/ / /t x y za a t a x a y a∇⋅ = ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂
G G / z  is a four-divergence of aG ; 2 2 2 2 2 2 2 2/ / / /t x y 2z∇ = ∂ ∂ −∂ ∂ − ∂ ∂ −∂ ∂  

is the D’Alembertian. 
Arbitrary choice of the function f  is valid until this choice does not affect any physically objective 

effect or value. In particular, the above gauge ambiguity hold in the field formalism only so far as the Lagrange 
equation for a classic charged particle and the expressions for the field energy-momentum density tensor 
components are based on the four-curl A∇×

G G
 (called as “electromagnetic field tensor” in the field formalism). It 

can be shown that the wave function of a quantum charged particle also is “insensitive” to the Lorenz gauge [4]. 
However, the expressions (2) and (3) for the energy-momentum density tensor in the potential 

formalism are not founded on A∇×
G G

 tensor. Therefore, the bounds of the electromagnetic potential gauge 
ambiguity in the potential formalism must be checked on the condition that this ambiguity does not affect the 
closed (insulated) electromagnetic system total energy-momentum four-vector { }, , ,t x y zP P P P P=

G
. Moreover, the 

interpretation of the electromagnetic potential as a real physical variable imposes one more constraint on the 
gauge: all components of A

G
 must be finite for the whole Minkowski space-time. This excludes linear (with a 

non-zero coefficient) and exponential (with a real argument) dependences of f∇
G

 components on τ . 
Generally, the concept of a “closed” or “insulated” system, having negligibly small interactions with 

other systems in comparison with the internal interactions, differs for the field and the potential formalisms. In 
the first, a system containing no charged particles interacting distinctly with electromagnetic fields of other 
systems can be called as “closed”. E.g., a single charged particle within a closed perfectly conductive cavity 
having permanent charge or a charged particle nearby an infinitely long solenoid with invariable current are 
insulated systems from this point of view. The rest mass of such systems 0M  can be defined from the equation: 
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On the contrary, the potential formalism defines insulated system as containing no charged particles 
which are affected noticeably by “disturbances” of electromagnetic potential produced by other systems (i.e., 
deviations of A

G
 from the “undisturbed” state when both natural and forced electromagnetic oscillations of the 

space-time are absent). The abovementioned particles within the closed cavity and nearby the infinitely long 



solenoid are not insulated systems in the potential formalism, because tA  and Aξ  components respectively for 
the areas including those particles differ from the ones in the cases of absence of the cavity charge and the 
solenoid current respectively. This is inadmissible to calculate the rest masses of such particles under (5). Only 
total masses of the systems “the cavity with the charged particle inside it” and “the solenoid with the charged 
particle nearby it” can be defined. Note that “insulation” of an electromagnetic system does not suppose the 
electric neutrality of one. It is enough if the electromagnetic fields (or the potential disturbances) produced by 
this system do not reach for other systems distinctly. 

Analyzing possible solutions of (4) (these can be easily obtained with the variable separation method) 
on the condition that all components of f∇

G
 are finite for the whole space-time, it can be found that only two 

types of A
G

 gauge are formally valid: 
(i). Adding arbitrary finite constant to any component of A

G
. 

(ii). Adding components of “Zero Magnetic” (ZM) natural oscillation of the potential [4] to A
G

: 
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[except for  that is a part of (i)], where  and e e e e 0t x y zk k k k= = = = etk ek ξ  are components of the four-wave-

number ,  for the natural oscillation; e e e e e{ , , , }t x y zk k k k k=
G
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0A  is arbitrary constant; 
ξ  is a generic symbol meaning any of the coordinates , ,x y z . 

It is obviously from (2) that the total energy and momentum of a closed system are depending on the 

gauge (i) if the total charge  of this system is not equal to zero (because of the “interaction” components 

changing). Thus, cannot be ambiguity for this type of gauge. This is evidently for elementary physical reasons 
(e.g., the equality of energies and momentums of an alone charged particle in the field and the potential 
formalisms, or the equality of the rest masses of charged particles and their antiparticles) that for the 
“undisturbed” electromagnetic state of the Minkowski space-time all components of 
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 must be equal to zero. 
The gauge (ii) also results in the same reasoning. Moreover, any electromagnetic system subjected to 

the ZM oscillation cannot be considered as “insulated”. 
The only rational explanation can be offered for the described above: the electromagnetic potential 

four-vector is a relative coordinate, not “absolute”, for the oscillating system. Namely, A
G

 four-vector may be 
physically construed as a 4D deviation of the distributed electromagnetic oscillating system (Minkowski space-
time) from its “undisturbed” state. Therefore, all components of A

G
 are identically equal to zero in the 

“undisturbed” state, e.g., at a large distance from all free charges and currents. 
 

Conclusions 
The electromagnetic potential must be considered as some relative measure describing deviation of the 

distributed electromagnetic oscillating system (Minkowski space-time) from the “undisturbed” state (when both 
natural and forced oscillations are absent). Therefore, there is no ambiguity in the gauge of one: all components 
of the potential four-vector are asymptotically verging towards zero while the distance from all free charges and 
currents enlarges. Such interpretation turns the electromagnetic potential into a physically real value. 
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