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Abstract − Hypotheses for the eigenvalue spectrum, phase 
characteristics and differential phase shift of the circular 
waveguides that comprise azimuthally magnetized ferrite are 
advanced, generalizing results from the theory of these 
transmission lines, worked out in terms of the confluent 
hypergeometric functions. Some corollaries of the proposed 
statements are considered. Numerical substantiation of the 
assumptions is made for two configurations, using iterative 
methods. Computational problems which arise in the analysis 
are discussed.  

I. INTRODUCTION 
HE circular waveguides with azimuthally magnetized 
remanent ferrite and dielectric layers appear to be 

microwave structures, eligible for nonreciprocal digital 
phase shifters with possible application in electronically 
scanned antenna arrays [1-16]. The reason for this is their 
ability to produce differential phase shift β∆  when latching 
the ferrite remanent magnetization [1-16]. It has been 
shown that the theory of the normal nTE0  modes in these 
configurations may successfully be built by the complex 
Kummer and Tricomi confluent hypergeometric functions 
(CHFs) ( )xca ;,Φ  and ( )xca ;,Ψ , resp. [17] for the ferrite 
and the real cylindrical ones for the dielectric media [10-
16]. Until now three geometries have been examined 
mainly: the completely filled with ferrite circular and 
coaxial waveguides, and the one that contains coaxially 
positioned ferrite rod and dielectric toroid, applying the 
boundary-value problem approach [10-16]. The principal 
aims of the study can be summarized as follows: i) to 
specify the configuration which provides maximum β∆  
per unit length in the widest possible frequency band with 
minimum dependence on frequency; ii) to determine the 
conditions for propagation and the ones for operation of the 
waveguides as phasers; iii) to find formulae for direct 
computation of the differential phase shift from the 
structure and material parameters. 
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An essential component of the analysis performed was 
the investigation of the influence of imaginary part k  ( k  – 
real) of the complex first parameter =a  jkc −2/  of 

CHFs on the purely imaginary roots ( )c
nk ,ξ  ( ,...3,2,1=n ), of 

the characteristic equations of geometries explored. The 
interval of variation of k  was accepted finite, 
symmetrically singled out with regard to the point 0=k , 
assuming 3=c  and jzx =  ( z  – real, positive) [10]. It has 
recently been established that due to this fact (the 
incomplete knowledge of the eigenvalue spectrum), the 
phase behaviour even of the simplest of above 
configurations is not fully known [14]. 

Here, generalizing results of the research of two basic 
structures, obtained by means of specially developed 
numerical techniques, several hypotheses are formulated 
which reveal important features of the eigenvalue spectrum, 
phase curves and differential phase shift provided. The 
techniques involve iterative procedures, based on the 
repeated numerical solution of complex transcendental 
equations that take in CHFs for varying parameters. Graphs 
and numerical data are adduced as testimony of the 
truthfulness of the assertions. The significance of the 
hypotheses and some of their corollaries are debated. The 
ways of calculating the L  numbers and factors A , B , C  
which come into being in the formulations, are described. 
Some issues in substantiating the statements are threshed 
out. 

II. NORMAL nTE0  MODES IN THE CIRCULAR WAVEGUIDES 

WITH AZIMUTHALLY MAGNETIZED FERRITE  

A. Propagation Problem 
We focus for simplicity on two geometries: the circular 

waveguide, entirely filled with azimuthally magnetized 
ferrite and the one, loaded with ferrite cylinder and 
dielectric toroid. The waveguide and cylinder radii are 0r  
and 1r , resp. The anisotropic medium has a permeability 
tensor with off-diagonal element ωγα /rM= , 

11 <<− α , (γ  – gyromagnetic ratio, rM  – remanent 
magnetization, ω  – angular frequency of the wave). The 
relative permittivities of inner and outer strata are rε  and 

dε , resp. Both fillings are lossless, the structure wall is 
perfectly conducting and the thickness of central switching 
conductor is ignored. The equations [10-16]: 

T 
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control the normal nTE0  modes propagation in the first and 
second configuration, resp. Eqn. (1) and the left-hand side 
of eqn. (2) are expressed by means of the complex Kummer 
CHF [17]. The first and third forms of the right-hand side of 
eqn. (2) are written in terms of ordinary and modified 
derivative difference Bessel functions [18]. The following 
notations are used: a = jk−5.1 , 3=c , 00 jzx = , 

( )22/ ββα=k , ( k  – real, +∞<<∞− k ), 

( ) 2/122
2 1 βαβ −−= , 020 2 rz β= , ( 0z  – real, 

00 >z ), 01 / rr=ρ , ( 10 ≤< ρ ), 0y  = 0qz , 00 yv ρ= , 

00 pzu = , 00 uw ρ= , jqp = , q = 

= ( ){ ( )[ ] ( )22 1//21/5.0 ααεε −+ krd – ( ) } 2/12/2 αk , 
0=m . The phase constant, radial wavenumber, guide and 

cylinder radii are normalized by the relations β  = 

( )rεββ 0 / , ( )rεβββ 022 /= , rrr εβ 000 = , 

rrr εβ 101 =  where 000 µεωβ = . The condition q  
( p ) – real, positive or 0≡≡ pq  needs application of the 

first (third) or second form of eqn. (2). If ( )c
nk ,ξ  is the n th 

positive purely imaginary root in 0x  ( ...3,2,1=n ) of any 
of above equalities, the eigenvalue spectrum of the fields 

examined is given by 2β  = ( ) ( )0, 2/ rc
nkξ  [10-16]. 

B. Phase Portrait 

To figure the ( )0rβ  characteristics with α  as parameter 
for normal 01TE  mode in the ferrite-dielectric waveguide, 
we extend the approach, described lately for the ferrite case 
[14]. First the ratio ρ  is specified and the permittivities rε  
and dε  are fixed. Then, discrete α ’s are selected. For each 
set { }kdr ,,,, αρεε , considering k  as altering parameter 
with varying step, an iterative technique is harnessed which 
yields the first roots ( )c

k 1,ξ  of eqns. (1), (2) in 0x  for both 

signs of k . In the calculations a finite number of terms of 

the infinite power series, defining the wave functions 
involved [17,18], is used. The numbers ( )c

k 1,ξ  are 
determined, utilizing the method of halving, applied with 
respect to the real parts of the equations. The results are 
checked also in relation to their imaginary parts. Thirty to 
forty iterations provide an accuracy of at least ten decimal 
places. Computations are performed in the interval 

55 1010 <<− k . At each cycle the values of α , k  and 
( )c
k 1,ξ  ( 3=c ), are put in [14]: 

 ( )( ) ( )[ ]{ } ( )22
1,0 1/2/1/ αααξ −+= kkr c

k , (3) 

 ( ) ( )[ ]{ }22 2/1/1 kααβ +−= . (4) 

Since the phase chart of first configuration for normal 01TE  
mode has been analyzed in detail [14], results for the second 
one are plotted here only in Figs. 1a–c in case 6.0=ρ , 

1=rε  and 10,5,1=dε , resp. (In view of the formula for 
q  the ratio rd εε /  is of importance and not the actual 
values of rε  and dε .) The solid (dashed) lines correspond 
to 0>+α  ( 0<−α ). (The subscripts ”+“,”–“ indicate 
quantities, correlated to positive or negative magnetization, 
resp.) The curve, labelled 0=α  is relevant to the dielectric 
case. All characteristics are of finite length in contrast to the 
ferrite waveguide where the ones for 0>+α  are infinitely 
long [14]. The common (starting) points of curves for the 
same α  at the horizontal axis give the cutoff  

frequencies crr0  = ( ) ( )2
1,0 12/ αξ −c  of the geometry. 

Their ends −enr0  and +enr0  shape envelopes (dotted lines), 
designated by the symbols −1En  and +1En , resp. (The 
subscripts “ ±en ” are used to denote the parameters of the 
envelopes.) The quantities crr0  are distributed between the 

beginning of 0=α  – characteristic, marked by 0R  and the 

bifurcation point of the envelopes 1EnR . There are areas of 
partial overlapping of the intervals of propagation for 

0>+α  and 0<−α  (areas of phaser operation in which 
for each 0r  transmission is possible for both signs of rM  

and +− −=∆ βββ  is obtained).  
 

C. Prerequisites for Advancing Some Hypotheses 
If ±∞→±k , expressions (3), (4) are simplified as 

( )( ) 2
1,0 1// ±±±±± −= ααξ c

kkr , 21 ±± −= αβ . The 

numerical analysis shows that in this case −0r , +0r  or both 

±0r  tend to certain finite values ±enr0 , the pertinent 

( )0rβ – curves become finite and their ends constitute the 

−1En  and +1En – lines. This is possible, if the products 
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( )c
kk 1,±± ξ  possess finite limits ±L , when ±∞→±k . 

  

 
a 

 
b 

 
c 

Fig. 1.  Phase curves ( )0rβ  of the normal 01TE  mode in the circular 

ferrite-dielectric waveguide with α  as parameter for 6.0=ρ  in case: 

(a) 1=rε , 1=dε ; (b) 1=rε , 5=dε ; (c) 1=rε , 10=dε  
 

Moreover, a proportionality among β∆ , α  and 0r  is 
observed in the ferrite waveguide [10,11]. These facts lead 
us to the conclusion that there are some general properties, 
inherent to all configurations with azimuthally magnetized 
ferrite. In view of this we advance three hypotheses for: i) 
the eigenvalue spectrum; ii) the phase characteristics and 
iii) the differential phase shift and strive to substantiate 
them. 

III. HYPOTHESES 

A. Hypothesis for the Eigenvalue Spectrum  

Hypothesis 1: If ( ) ( ,,...,,,,...,, 2121, dgddrlrr
c
nk εεεεεεξ  

,...,, 21 ρρ )ls αααρ ,...,,, 21  is the n th positive purely 

imaginary root in 0x  ( ...3,2,1=n ) of the characteristic 
equation for normal nTE0  modes of any stratified circular 
waveguide of radius 0r , containing arbitrary positioned l  
coaxial azimuthally magnetized ferrite layers ( )1≥l , 
having off-diagonal ferrite tensor elements lα  and relative 
permittivities rlε , and g  coaxial isotropic dielectric layers 
( 0≥g ) of relative permittivities dgε , of outer and inner 

radii ratios tρ  and 1+tρ  where 0/ rrtt =ρ  and 

1+> tt ρρ  [ tr  is the radius of the interface, separating the 
t th and )1( +t th layers, st ,...,2,1= , gls += ; 01 =+sr  
or 01 >+sr , if the thickness of central switching conductor 
is or is not neglected, ( 1+sr – inner radius of the inmost 
layer)]: 

 ( ,,...,,,,...,,, 2121 dgddrlrrcF εεεεεε  

 ) 0;,,,...,,,,...,, 02121 =xknls αααρρρ ,  (5) 

derived in terms of confluent hypergeometric F ( )xca ;, , 
F ( )xca ;2,1 −−  and cylindrical C ( )yν , C ( )y1−ν  
functions, provided jkca −= 2/  – complex, 3=c  – real,  

0xqxx ttt ρ== , 0zqyy dttt ρ== , 
( )ααεε ,,,, trrttt kqq = , ( )αεε ,,, kqq rdtdtdt = , 

00 jzx =  – positive purely imaginary, 0z  – real, positive, 
α , rε , ( )2/cajk −=  – parameters, relevant to anyone 
of the ferrite layers, ( k  – real), 1=ν , 0>rlε , 0>dgε , 

10 ≤< tρ , then the infinite sequences of numbers ( ){ }c
nk ,ξ , 

( ){ }c
nkk ,ξ  and ( ){ }c

nka ,ξ  are convergent for +∞→k  at 

least for the one of the (or for both) signs of k  ( n  – fixed). 
The limit of the first sequence is zero and the limit of the 
second and third ones is the same. It equals the finite 
positive real number L  where  

( ,,...,,,,...,,, 2121 dgddrlrrcL εεεεεε  
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)nls ,,...,,,,...,, 2121 αααρρρ . 
If L  exists for 0>k  and 0<k , it holds: 
 ( ) ( ,,...,,,,...,,lim 2121, dgddrlrr

c
nkk

k εεεεεεξ
±∞→

 

 )ls αααρρρ ,...,,,,...,, 2121  =  
 ( ,,...,,,,...,,, 2121 dgddrlrrcL εεεεεε±  

 )nls ,,...,,,,...,, 2121 αααρρρ , (6) 
( ) ( ,,...,,,,...,,lim 2121, dgddrlrr
c
nkk

a εεεεεεξ
±∞→

 

 )ls αααρρρ ,...,,,,...,, 2121  =  
 ( ,,...,,,,...,,, 2121 dgddrlrrcL εεεεεε±  

 )nls ,,...,,,,...,, 2121 αααρρρ .  (7) 

Corollaries: Let 1k  and 2k  be any two positive or negative 
real numbers such that 1k  and 2k  are large and 

21 sgnsgn kk ≡ . Let ( )c
nk ,1

ξ  and ( )c
nk ,2

ξ  be the respective 

roots of eqn. (5) for given set of parameters 
rlrr εεε ,...,, 21 , ,,,,...,,,,...,, 212121 ααρρρεεε sdgdd  

lα...,  and n , )3( =c . Then at least for one of the (or 

for both) signs of k  it holds: i) ( ) ( )c
nk

hc
nk ,2,1

10 ξξ −≈  (if 

21 10 kk h=  and h  is a positive or negative integer or 

zero); ii) ( ) ( )c
nk

c
nkkk ,1,221 // ξξ≈ ; iii) ( ) ( )

1,22,1
// kk c

nk
c

nk ξξ ≈ ; 

iv) ( ) ( ) Lkk c
nk

c
nk ≈≈ ,22,11 ξξ ; v) ( ) kLc

nk /, ≈ξ ; and 

vi) ( ) 2
, // kLkc
nk ≈ξ , ( +∞→k  and L  is a finite positive 

real number). Similar properties possess also the moduli 
1a  and 2a  of parameter a , corresponding to 1k  and 

2k , introduced above. 

B. Hypothesis for the Phase Characteristics  
Hypothesis 2: For any stratified circular structure, 

containing at least one azimuthally magnetized ferrite layer 
at least one (or two) envelope curve(s), relevant to the 
one of the (or to both) signs of rM , restricts (restrict) the 

( )0rβ – phase characteristics of normal 01TE  mode with 
α  as parameter from the one of their sides. The other side 
of characteristics is fixed by the cut-off frequencies crr0 .  

Corollaries: Transmission takes place in a restricted 
frequency band(s) at least for the one of the (or for both) 
signs of rM . The co-ordinates of the points, forming the 

envelopes are ⎟
⎠
⎞⎜

⎝
⎛ −= ±±±±

2
0 1/ enenen Lr αα  and 

21 ±± −= enen αβ .  
C. Hypothesis for the Differential Phase Shift  
Hypothesis 3: The differential phase shift 

+− −=∆ βββ  produced in each area of phaser operation 

by any stratified circular waveguide, containing at least one 
azimuthally magnetized ferrite layer which sustains normal 

01TE  mode, can directly be computed in normalized form 
from the structure and material parameters, using anyone 
of the formulae:  
 αβ A=∆ , (8) 

 0/ rB=∆β , (9) 

 ( )αβ 0/ rC=∆ , (10) 

in which ( )rεβββ 0 /∆=∆ . 
The factors A , B , C , being a function of pa-rameters 

( ,...,,,,...,,,,...,, 212121 ρρεεεεεε dgddrlrr  

)021 ,,...,,, rls αααρ  
are determined by an iterative method, consisting in a 
repeated numerical solution of the complex characteristic 
equation of the configuration, followed by a high-accuracy 
calculation of the phase constant for altered parameters 
and both sings of rM . 

Corollaries: If the factors A , B , C  and the areas of 
application of the formulae are known in each case, it is 
enough to predict the phaser operation of any structure. The 
accuracy of results obtained, applying the formulae, 
depends on the density of the network of parameters for 
which the factors are tabulated and deviates from the exact 
ones with a few percents. 

IV. SUBSTANTIATION AND COMPUTATIONAL PROBLEMS 
The truthfulness of statements III.A and III.B assigned to 

eqn. (1) has recently been proved for 0<k  [14] and that of 
III.C has been discussed earlier [11]. In the case considered 
affirmation III.A is valid also for c  – restricted positive 
integer [14], as well as for c  – arbitrary real number 

[16]. Table I manifests the effect of k  on ( )c
k 1,ξ , ( )c

kk 1,ξ  

and ( )c
ka 1,ξ , ( )c

nk ,ξ  – roots of eqn. (1), for c  = 1,5,10. 

If ( )c
nkk

k ,lim ξ
−∞→

 = ( )ncL , , provided c  = 1,2,…10 and 

1=n , then ( )ncL ,  = 1.4457964906, 3.6704926603, 
6.5936541063, 10.1766164533, 14.3957352232, 
19.2347320785, 24.6815681106, 30.7269000369, 
37.3632201944, 44.5843352790. Fig. 2 illustrates the 
dependence of ( )ncL ,  on c  with n  as parameter. The 
numerical analysis of eqn. (2) shows that assumptions III.A 
and III.B hold both for 0<k  and 0>k  (cf. Table II and 
Fig. 1a–c). Table III and Fig. 3 demon-strate the 
influence of parameters involved on +L  and −L  

numbers where ( ) ( )αρεεξ ,,,lim , dr
c
nkk

k
±∞→

 = 

= ( )ncL dr ,,,,, αρεε± , ( ) ( )αρεεξ ,,,, dr
c
nk  – roots of eqn. 

(2). Assertion III.C is true in two areas whose specification 
needs special investigation [13]. Table IV lists the factors 
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A , B , C  for normal 01TE  mode as a function of ρ  and 

0r  in case 1=rε , 10,5,1=dε  and 01.0=α . 
 

 
Fig. 2.  ( )ncL ,  numbers versus c  for values of the natural number 

1=n  to 4 

 
Fig. 3.  +L  and −L  numbers for eqn. (2) versus α  with ρ  as 

parameter, assuming 1=rε , 1=dε , 3=c  and 1=n .  

 
The L  numbers are found, employing the procedure, 

described in Section II.B with 510=k . To determine the 

quantities A , B , C  for fixed { }0,rα , resp. 

{ }0,,,, rdr αρεε , we extend it. First, eqns. (1), (2) are 

solved with respect to 0x  ( 0z ) for the set { }k,α , 
{ }kdr ,,,, αρεε , resp., varying k  in an arbitrary interval 

( ) ( ) ( )[ ]000 , rightleft kkk =∆  with an arbitrary step ( )0kδ  (e.g. 

( ) 30 10.1 −=leftk , ( ) 30 10.2 −=rightk , ( ) 40 10−=kδ ), yielding 

the relevant values ( )0
0r  and ( )0β  from expressions (3), 

(4). The limits of ( )0k∆  are changed till we get ( )0
00 rr ∆∈ , 

( ) ( ) ( )[ ]0
0

0
0

0
0 , rightleft rrr =∆ . (The endpoints of ( )0

0r∆  

correspond to the ones of ( )0k∆ ). The closest larger and 
smaller computed values of guide radius are accepted as 
first approximations ( )1

0leftr , ( )1
0rightr  to 0r  

( ( ) ( )0
0

1
00 rrr ∆∈∆∈ , ( ) ( ) ( )[ ]1

0
1

0
1

0 , rightleft rrr =∆  and the 

respective parameters k  are taken as left and right ends of 

the new interval ( ) ( ) ( )[ ]111 , rightleft kkk =∆ . Next we fix 

( ) ( ) 10/01 kk δδ = . This is reiterated until for the n th 

approximation it holds ( ) ( ) ε<− n
left

n
right rr 00  (ε  – prescribed 

accuracy, e.g. 1010−=ε ). Any of the computed values 
( )nβ  from the interval ( ) ( )[ ]n

right
n

left ββ , , pertinent to ( ) =∆ nr0  

( ) ( )[ ]n
right

n
left rr 00 , , may be adopted as the one of β  looked for. 

The procedure is repeated twice for both signs of k , 
resulting in −β  and +β , resp. +− −=∆ βββ   for  the set 

{ }0,rα , resp. { }0,,,, rdr αρεε  chosen. The expressions: 

 αβ /∆=A , (11) 

 0rB β∆= , (12) 

 αβ /0rC ∆= , (13) 

give the factors of interest. The dependence of the latter on 
certain characteristics of the first structure is slight [11]. 
Neglecting it permits to develop in this case a 
straightforward approximate technique for counting up β∆  
which brings in an insignificant error in the results [16]. 

The ever increasing number of parameters is a serious 
obstacle for an exhaustive analysis of the eigenvalue 
spectrum and phase behaviour of the multilayered 
configurations (which as expected would be of practical 
importance in the applications). When the number of strata 
s  (of wave functions involved in the characteristic 
equations) grows, computational problems appear, 
especially if k  gets large. For very large s  this could lead 
eventually to the necessity of leaving off the CHFs based 
boundary-value approach and searching for new more 
sophisticated numerical methods for solution of the 
corresponding propagation tasks. 
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TABLE I  

VALUES OF THE FIRST POSITIVE PURELY IMAGINARY ROOTS 
( )c
k 1,ξ  OF EQN. (1) AND OF THE PRODUCTS 

( )c
kk 1,ξ  AND 

( )c
ka 1,ξ  

FOR LARGE NEGATIVE  k  IN CASE jkca −= 2/  AND 10,5,1=c  

k  ( )c
k 1,ξ  ( )c

kk 1,ξ  a  ( )c
ka 1,ξ  

1=c  

-10 000 (-4) 1.44579 64895 1.44579 64896 10000.00001 25000 1.44579 64914 

-20 000 (-5) 7.22898 24521 1.44579 64904 20000.00000 62500 1.44579 64909 

-40 000 (-5) 3.61449 12266 1.44579 64906 40000.00000 31250 1.44579 64907 

-60 000 (-5) 2.40966 08177 1.44579 64906 60000.00000 20833 1.44579 64907 

-80 000 (-5) 1.80724 56133 1.44579 64906 80000.00000 15625 1.44579 64906 

-100 000 (-5) 1.44579 64906 1.44579 64906 100000.00000 12500 1.44579 64906 

5=c  

-10 000 (-3) 1.43957 34963 14.39573 49631 10000.00031 24999 14.39573 54130 

-20 000 (-4) 7.19786 75800 14.39573 51602 20000.00015 62499 14.39573 52726 

-40 000 (-4) 3.59893 38023 14.39573 52094 40000.00007 81249 14.39573 52375 

-60 000 (-4) 2.39928 92030 14.39573 52185 60000.00005 20833 14.39573 52310 

-80 000 (-4) 1.79946 69027 14.39573 52217 80000.00003 90625 14.39573 52287 

-100 000 (-4) 1.43957 35223 14.39573 52232 100000.00003 12500 14.39573 52277 

10=c  

-10 000 (-3) 4.45843 32167 44.58433 21678 10000.00124 99999 44.58433 77408 

-20 000 (-3) 2.22921 67262 44.58433 45247 20000.00062 49999 44.58433 59179 

-40 000 (-3) 1.11460 83778 44.58433 51140 40000.00031 24999 44.58433 54623 

-60 000 (-4) 7.43072 25371 44.58433 52231 60000.00020 83333 44.58433 53779 

-80 000 (-4) 5.57304 19076 44.58433 52613 80000.00015 62499 44.58433 53484 

-100 000 (-4) 4.45843 35278 44.58433 52790 100000.00012 50000 44.58433 53347 

 
TABLE II  

VALUES OF THE FIRST POSITIVE PURELY IMAGINARY ROOTS 
( )c
k 1,ξ  OF EQN. (2) AND OF THE PRODUCTS 

( )c
kk 1,ξ  AND 

( )c
ka 1,ξ   

FOR LARGE k  IN CASE jkca −= 2/ , 3=c , ASSUMING 6.0=ρ , 4.0=α , 1=rε  AND 10,5,1=dε  

k  ( )c
k 1,ξ  ( )c

kk 1,ξ  ( )c
ka 1,ξ  k  ( )c

k 1,ξ  ( )c
kk 1,ξ  ( )c

ka 1,ξ  

1=rε , 1=dε  

-10 000 (-4) 2.74742 70808 2.74742 70808 2.74742 71117 10 000 (-4) 6.16470 15118 6.16470 15118 6.16470 15811

-20 000 (-4) 1.37371 35415 2.74742 70829 2.74742 70906 20 000 (-4) 3.08235 07594 6.16470 15188 6.16470 15361

-40 000 (-5) 6.86856 77086 2.74742 70834 2.74742 70854 40 000 (-4) 1.54117 53801 6.16470 15205 6.16470 15249

-60 000 (-5) 4.57904 51392 2.74742 70835 2.74742 70844 60 000 (-4) 1.02745 02535 6.16470 15209 6.16470 15228

-80 000 (-5) 3.43428 38545  2.74742 70836 2.74742 70841 80 000 (-5) 7.70587 69012 6.16470 15210 6.16470 15220
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k  ( )c
k 1,ξ  ( )c

kk 1,ξ  ( )c
ka 1,ξ  k  ( )c

k 1,ξ  ( )c
kk 1,ξ  ( )c

ka 1,ξ  

-100 000 (-5) 2.74742 70836 2.74742 70836 2.74742 70839 100 000 (-5) 6.16470 15211 6.16470 15211 6.16470 15218

1=rε , 5=dε  

-10 000 (-5) 8.87089 22715 0.88708 92271 0.88708 92371 10 000 (-4) 1.04184 56590 1.04184 56590 1.04184 56707

-20 000 (-5) 4.43544 61366 0.88708 92273 0.88708 92298 20 000 (-5) 5.20922 82959 1.04184 56592 1.04184 56621

-40 000 (-5) 2.21772 30684 0.88708 92273 0.88708 92280 40 000 (-5) 2.60461 41481 1.04184 56592 1.04184 56599

-60 000 (-5) 1.47848 20456 0.88708 92273 0.88708 92277 60 000 (-5) 1.73640 94321 1.04184 56592 1.04184 56596

-80 000 (-5) 1.10886 15342 0.88708 92273 0.88708 92275 80 000 (-5) 1.30230 70740 1.04184 56592 1.04184 56594

-100 000 (-6) 8.87089 22727 0.88708 92273 0.88708 92274 100 000 (-5) 1.04184 56592 1.04184 56592 1.04184 56593

1=rε , 10=dε  

-10 000 (-5) 6.17114 70323 0.61711 47032 0.61711 47102 10 000 (-5) 6.87626 32753 0.68762 63275 0.68762 63353

-20 000 (-5) 3.08557 35167 0.61711 47033 0.61711 47051 20 000 (-5) 3.43813 16383 0.68762 63277 0.68762 63296

-40 000 (-5) 1.54278 67585 0.61711 47034 0.61711 47038 40 000 (-5) 1.71906 58192 0.68762 63277 0.68762 63282

-60 000 (-5) 1.02852 45056 0.61711 47034 0.61711 47036 60 000 (-5) 1.14604 38795 0.68762 63277 0.68762 63279

-80 000 (-6) 7.71393 37925 0.61711 47034 0.61711 47035 80 000 (-6) 8.59532 90963 0.68762 63277 0.68762 63278

-100 000 (-6) 6.17114 70340 0.61711 47034 0.61711 47034 100 000 (-6) 6.87626 32767 0.68762 63277 0.68762 63277

 
TABLE III 

VALUES OF QUANTITIES −L  AND +L  FIGURED FROM EQN. (2) AS A FUNCTION OF ρ  AND α  IN CASE jkca −= 2/ , 3=c  AND 1=n , 

ASSUMING 1=rε  AND 10,5,1=dε   

0.2 0.4 0.6 0.8 
 

 ρ  

α  −L  +L  −L  +L  −L  +L  −L  +L  

1=rε , 1=dε  

0.2 3.5111 0846 3.9142 5972 2.9014 2227 4.6501 4191 2.8496 4052 6.4984 3976 3.8628 6509 12.3814 0254

0.4 3.3675 7877 3.6848 9190 2.8397 8279 4.4014 6650 2.7474 2708 6.1647 0152 3.6252 3420 11.7515 3632
0.6 3.0623 3010 3.2520 3135 2.7202 5279 3.9241 2510 2.5715 9875 5.5228 1073 3.2075 2038 10.5456 6688
0.8 2.4194 9043 2.4794 1859 2.4554 5605 3.0444 9929 2.3061 2597 4.3292 5482 2.5741 7211 8.3109 3878

1=rε , 5=dε  

0.2 0.3760 1710 0.3794 21099 0.4002 1981 0.4174 4054 0.4900 1483 0.5331 4437 0.8195 9956 0.9317 2318
0.4 0.6986 8964 0.7091 39418 0.7415 5971 0.7995 4995 0.8870 8923 1.0418 4566 1.4260 6290 1.8440 5258
0.6 0.9102 3957 0.9238 75270 0.9830 4444 1.0730 7612 1.1536 7481 1.4305 5163 1.7466 0085 2.5627 8540
0.8 0.9090 6543 0.9166 08585 1.0398 3181 1.1051 8240 1.2403 3095 1.5214 1909 1.7231 1356 2.7809 8414

1=rε , 10=dε  

0.2 0.2517 7596 0.2532 9581 0.2696 1968 0.2773 1223 0.3326 6207 0.3519 5582 0.5609 1908 0.6111 2579

0.4 0.4721 6990 0.4768 9920 0.5072 6151 0.5335 2923 0.6171 1470 0.6876 2633 1.0109 9368 1.2023 9029

0.6 0.6230 2805 0.6293 3803 0.6836 1652 0.7251 7233 0.8246 0230 0.9540 1844 1.2920 3463 1.6796 4170

0.8 0.6316 6883 0.6352 7296 0.7313 9685 0.7621 5469 0.9044 0197 1.0378 1324 1.3349 3228 1.8597 5780
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TABLE  IV 
VALUES OF FACTORS A , B , C  AS A FUNCTION OF ρ  AND 0r  IN CASE jkca −= 2/ , 3=c  AND 1=n , 

 ASSUMING 1=rε  AND 10,5,1=dε  AND 01.0=α  

ρ  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1=rε , 1=dε  

0r  4 

A 0.01459 0.10562 0.30093 0.55953 0.79194 0.91006 0.87830 0.73651 0.58102 0.51350 

B 0.00058 0.00422 0.01203 0.02238 0.03167 0.03640 0.03513 0.02946 0.02324 0.02054 

C 0.05836 0.42249 1.20373 2.23813 3.16777 3.64026 3.51322 2.94606 2.32408 2.05402 

1=rε , 5=dε  

0r  1.75 1.8 1.85 2 2.25 3 4 

A 0.03222 0.21329 0.53396 0.92266 1.23424 1.40669 1.21346 0.97252 0.59889 0.51350 

B 0.00056 0.00373 0.00961 0.01706 0.02468 0.03165 0.03640 0.03890 0.02395 0.02054 

C 0.05639 0.37326 0.96113 1.70692 2.46848 3.16505 3.64038 3.89011 2.39557 2.05402 

1=rε , 10=dε  

0r  1.25 1.35 1.5 1.61 1.95 2.6 3.8 4 

A 0.04489 0.29344 0.75537 1.20270 1.53906 1.91185 1.87055 1.47050 0.67514 0.51350 

B 0.00056 0.00366 0.00944 0.01623 0.02308 0.03078 0.03647 0.03823 0.02565 0.02054 

C 0.05611 0.36680 0.94421 1.62365 2.30860 3.07807 3.64757 3.82331 2.56554 2.05402 
 
 

V. CONCLUSION 
A guess is made on the existence of some properties of 

the stratified circular waveguides, containing an 
arbitrary number of coaxial azimuthally magnetized 
ferrite layers which sustain normal nTE0  modes. A 
numerical and graphical substantiation of the statements is 
performed for two simple geometries of the class 
considered, utilizing CHFs and iterative schemes. An 
extension of the work would reveal further interesting 
features of geometries treated and would allow to find the 
criteria for their operation as phase shifters. 
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