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Abstract. The analysis of asymptotic representations 

of the systems protected from harmful influences is 

carried out. Various types of general models of the "man-

machine-environment" with protection are considered. 

Each of them adequately describes some of the practically 

important qualities of the object, and they all together 

describe the object in terms of its safe operation. The 

dynamic properties of complex ergonomic systems, 

presented in the form of systems of differential equations 

with a small parameter at the derivative are investigated 

The methods of reducing the impact on the person of 

harmful factors are theoretically substantiated. The 

dynamic protection response speed is considered to be 

significantly greater than the harmful factor production 

rate. 

Numerical solution of the general problem and the 

analytical solution for autonomous case is obtained for 

harmful effects. By using asymptotic the system of 

equations has been solved in closed form not only for 

autonomous case, but also for parameters smoothly 

changing in time. The estimates of the cost of protection 

was obtained for the various cost-functionals and for 

different functions in the right-hand side of the equation 

describing the dynamics of protection. To assess the 

accuracy of model calculations and for graphic 

representation of the results mathematical package 

MAXIMA is used. 

Key words: "Man-Machine-Environment" model, 

non-linear system, singular equations, asymptotic, 

linearization. 

 

INTRODUCTION 

 

It is known [1], that safety and efficiency are 

conflicting criteria, because they compete for the same 

resources. Their union in the single criterion is possible 

only in the super-system [1, 2]. This approach allowed us 

to consider the model of the "man-machine-environment-

protection" as a well-known general model of competition 

of two factors – the safety and efficacy [3]. 

It runs a large number of processes with different 

time scales. The hierarchy of these times is such that they 

differ by many orders of magnitude [4]. Usually, various 

problems of physics and engineering are modeled by 

means of differential or algebraic equations. And almost 

always it turns out that they have a high order, and when 

it comes to systems, they are of large dimensions. To 

overcome this problem the two diametrically opposite 

approaches are known.  

The essence of the first lies in the fact that if their 

characteristic elements are similar in the system, they can 

be considered equal in a first approximation. And we use 

that symmetry, considering small deviations in the 

subsequent approximations. 

The second is used when the individual elements of 

the system are very different in their characteristics. In 

this case, we introduce small parameters representing 

their attitude and conduct an asymptotic reduction of 

dimension, i.e., reducing the number of degrees of 

freedom. The use of asymptotic methods are not always 

stipulated specifically, and sometimes not even realized in 

modelling. So, in engineering practice it is extremely 

widespread to model systems with one degree of freedom. 

It is clear that the use of such models involves an 

asymptotic reduction of dimension. If the system in 

question consists of sets of similar elements, the 

asymptotic approach does not lead to a reduction of 

dimension, but rather to increase it. This method is 

applied to a very important class of models in which 

discrete systems are replaced by continuous, that is, as in 

our case, a system of differential equations. As a rule, the 

solution based on the asymptotic method cannot be 

expressed in a finite form, but only with the help of some 

series [4]. It turns out that the perturbation series are not 

necessarily converge. For example, it often happens that 

you can use the infinite series that diverges, but have the 

value in a certain sense. A typical situation is as follows: a 

function can be expanded in a series of functions and 

approximation, given by the first few terms of the series. 

It serves the better, the closer is the independent variable, 

or a parameter to a certain limit value. In many cases, the 

values of terms at first decrease rapidly, but then again 

begin to increase. In mathematical literature such series 

are called asymptotic series [5]. 

Here we first consider the overall system "Man-

Machine-Environment" under this approach. The input to 

this system is the information from the superior system 

(targets, instructions, etc.); the exit of such system is the 

result of work and a lot of other factors that are harmful to 

the environment and personnel. 

In operation the system changes its internal state. The 

element "man" has three functional parts: the part, that 

controls the "machine"; the object of the external 

environment and the impact of an object from the 

"machine". 

"Machine" element performs basic technological 

functions: impact on the subject of work and change the 

parameters of the environment. 
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The paper discusses different types of common 

models of "human-machine environment", each of which 

adequately describes some of the practically important 

quality of the object, and all together they describe the 

object in terms of its safe operation [6]. We get further 

details and results in the well-known and, as well as, some 

new models of subsystems [7]. This work is devoted to 

the quantitative analysis of an important model of a 

system with protection of a human from the harmful 

effects of the external environment and the impact of sub-

system called the "machine". 

 

THE ANALYSIS OF RECENT RESEARCH AND 

PUBLICATIONS  

 

In works [8, 9] a model of dynamic system 

describing the situation where primary subsystem 

"produces" a harmful factor, and second sub-system 

called “protection”, tries to reduce it completely, or at a 

reasonable price. As the base model – the basis for 

modification – a system of ordinary differential equations 

was taken. It describes fundamental laws of competition 

[10], and also known in ecology as a model of 

coexistence of species [11 – 15].  

We first introduce the basic assumptions, directly 

following from everyday experience. They are evident so, 

do not require additional justification but only need to be 

formalized. A more detailed discussion of these issues are 

delivered in [8]. 

We call Bioinfluence U of the harmful factor an 

increasing function of time t and the intensity of the factor 

u. In the first approximation, it can be written as an 

integral  
 

0

( )

T

U u t dt  . 

 

It also fits the additive property [6]. 

The following axiom are true: 

a) autocumulative; 

b) mutual cumulative; 

c) intensity of bioinfluence u fits: 

– in a regular situation  0u
t





; 

– in critical situations (positive feedback) 0u
t





. 

Protection factor z(t) may be controlled adaptively or 

programmatically, depending on the value of u(t). 

The cost of protecting C=C(z) is natural to consider 

as a monotonically increasing function of its intensity. 

In [6-8], we have conducted a formal description of 

the model that is under study here. 

Suppose there are two types of internal system states: 

production factors (including the production of harmful 

substances) U and the impact of protective factors Z. Let f 

and g be smooth functions, monotonically increasing in 

both arguments, such that ZUUgZf ,,0)0,(),0(  . 

Then it is natural to consider that ),(' ZUfU  ; 

),(' ZUgZ  . This is the most common model of 

dynamics of the system with protection. However, to 

obtain meaningful results, it must be detailed. 

Suffice general case of such a model of the system 

can be represented as: 

 

'( ) ( ) ( ) ( )

'( ) ( ( ), ( ))

u t u t z t u t

z t F u t z t

  




,  (1) 

 

with the constrains 0, сu z z  , where zс is fixed 

(stationary) protection value. 

The function F(u, z) can take quite arbitrary form [8]. 

The most common of them are the following three: 

 

1) )())(),(( tutztuF  ; 

2) )()())(),(( tztutztuF   ; 

3) )()()()())(),(( 2
21

2
21 tztztututztuF   . 

 

Solution of the system of differential equations (1) is 

not always possible to find analytically. Therefore, to find 

protection functions and the harmful effects some 

numerical methods for solving systems of differential 

equations are used. For the system (1) it is necessary to 

investigate the stability at different values of the 

parameters of the protection subsystem  

 

F(u(t), z(t)). 
 

It is also necessary to evaluate the cost of protection 

for different functions F. In [8] (1) is assumed to be 

autonomous, and the bifurcation parameters are not 

dependent on time. 

 

OBJECTIVES  

 

In this paper, in contrast to [8], it is assumed that the 

parameters of equation (1) depends on the time and takes 

into account the effect of "boundary layer" [5] near t = 0. 

Based on the results obtained in the course of the 

study, an analysis of bifurcations for protection is made, 

ie, we find a scenario of possible loss of stability [16] and 

the effectiveness of protection. 

 

 

THE MAIN RESULTS OF THE RESEARCH 

 

1. Methods for studying the stability of models 
 

The linearization theorem establishes a connection of 

the phase portrait of the nonlinear system (1) in the 

neighborhood of a fixed point with the phase portrait of 

its linearization [16, 17]. 

In general, if a nonlinear system ( )y Y y


 has a 

simple fixed point y = 0, then in the neighborhood of the 

origin, the phase portraits of this system and its 

linearization qualitatively equivalent, unless a fixed point 

of the linearized system is not the center [17]. 

Application of the theorem on linearization similarly 

is considered in the analysis of environmental models just 

the same way as for competition in economic systems 

[18-20]. We conclude that the studied in this paper 

system has a stationary point (0, 0) of the "saddle" type. 
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2. The problem of fast and slow variables. 

 

Dynamical systems include a large number of 

processes with different time scales. Given the time 

hierarchy process reduces the number of differential 

equations. "Very slow" variables do not change on time 

scales of these processes and can be regarded as constant 

parameters. For "fast" variables there can be written 

algebraic equations for their steady-state values instead of 

differential equations. The "fast" variables reach their 

stationary values almost instantly if compared to the 

"slow" [18]. This difference leads to a singularity by 

parameter in the second of the equations (1). Note that the 

asymptotic solution itself obtained in [8], is singularly in 

t. Because of this, the protection features and hazards for 

the second term of the asymptotic approximation have the 

form [8]: 
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Therefore, the solution obtained in [8] was adequate 

only far from the starting point. In this paper we use a 

generalized asymptotic representation, which takes into 

account the effect of "boundary layer" in the vicinity of 

the starting point. 

 

3. Research Algorithm 

 

We use an iterative algorithm with the following 

three steps. 

A) We find, if possible, an analytical solution of the 

system (1) using the functions included in the standard 

MAXIMA package, which is distributed on the basis of 

General Public License. If a solution cannot be found in a 

general way, then we use numerical methods (in the 

default package there used sufficiently universal method 

of Adams [19, 21]) or the asymptotic method proposed 

below. 

B) After a solution of (1) was found, analyze the 

behavior of the hazard function, at what times, if any, its 

values exceed its protection features, that is a system of 

dynamic protection comes to operation.  

By finding these intervals we decide: 

- to increase the protection against harmful factors 

that lead to an increased cost of the protection system; 

- leave the system without modification; 

- if the intensity of harmful factors does not exceed 

an opportunity of fixed protection, the overall cost of the 

protection system can be reduced by reducing both fixed 

and dynamic protection. 

C) Selecting the solution  and repeat the steps  A) - 

C) until you go beyond the limitations (the time of the 

system work or its value). 

 

 

4. Analytical study of the model 

 

Consider a system of differential equations (1) with a 

small parameter : 

 









)()()('
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.             (2) 

 

The difference of this system from the previously 

considered is a quasi-stationary harm u(t). Let us solve the 

system (2) with the asymptotic method by finding a series 

of terms with 210 ,,  . 

To begin, write out the system (2), taking into 

account the dependence of the functions ),( tu  and 

),( tz  in time and small parameter. 

We solve the system (2) for the main asymptotic term 

- with 
0 (zero approach). 

Write the asymptotic for the functions ),( tu  and 

),( tz  as follows: 

 

0( , ) ( ) ( )u t u t O   ,  0( , ) ( ) ( )z t z t O   . 

 

The system (2) for the zero-order approximation 

takes the form : 

 

0 0 0

0 0

'( ) ( ) ( )

0 ( ) ( )

u t u t z t

u t z t



 

 


 
.  (3) 

 

After substitution  )()( 00 tztu



 ,  with stationary 

protection   zc = 0   we get:  
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The resulting singularity at t=0 indicates the 

impossibility of such a solution for the Cauchy problem at 

t0 =0. 

Protection functions and hazard at zero 

approximation for  zc> 0  have the form: 

 

1
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1/ c

z t
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u t
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. 

 

Similarly, we solve the system (2) with regard to the 

term 
1 . 

So, we write asymptotic for ),( tu  and ),( tz . The 

system (2) for the first approximation takes the form: 

 

0 1 0 0 0

1 0 0 1

0 0 1 0 1

'( ) '( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ))

'( ) ( ) ( ) ( ) ( )

u t u t au t u t z t

u t z t u t z t

z t u t u t z t z t
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The terms with the factor  in powers of 2 and higher 

form the remainder term 2( )O  . 

The obtained system for )(1 tz  and )(1 tu  has the 

form: 
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After replacement )
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  we solve 

the equation: 
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As a result, the function )(1 tz  is found and, with its 

help, also the function )(1 tu , that are the first terms of the 

asymptotics. 

)
ln2

(
2

1
)(

21



 t

t
tz  ,  

)2ln2(
2

1
)( 2

21  tt
t

tu 


. 

 

Then the resulting functions of protection and hazard 

intensities for the first approximation take the form : 
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Similarly to [8] a decision based on the second term 

of the asymptotics is given above. 

 

5. Selection of the coefficients and the number of 

expansion terms 

 

We solve the system (2) with the asymptotic method 

for   0, 1. It will be shown that, in this study, the first 

two members of the series will be sufficient to obtain a 

good approximation. 

We present an algorithm for constructing an 

asymptotic solution of the problem (2) is similar to [18], 

under the assumption that the function on the right side is 

sufficiently smooth. We will look for it in the form of the 

asymptotic expansion 

 

     0, , ,z t z t z     
 (1.12) 

 

where  )...()(),( 10 tztztz    is the so-called regular 

series: 

 

...)()(),( 10   zzz , 

 

that describes boundary layer in the neighborhood of t=0  

(=t /). 
We choose the coefficients of system (2) from the 

physical meaning of the problem : 

 

=0.5,  β=5,  =2,  =1,  =0.0001. 

 

Also, we define the initial conditions at t=0 for 

numerical and asymptotic solutions as zc = z0 < u0, 

because the system has to emerge from the fixed 

protection value. Let z0=2,  u0=3 and T <10 – the time 

interval for the system. In the first approach the 

parameters of the system (2) are constant. 

 

6. The asymptotic solution of the problem 

 

We show that for β (0, 10), the asymptotic solution 

built for the first two terms of the expansion, is little 

different from a sufficiently accurate numerical one. 

Using the procedure described in [8, 22, 23], we 

obtain the graph of the solution of problem (2). The 

results are shown in the figures below. For a better 

representation of the system behavior near the boundary 

layer, we draw the schedule not on the whole range of T, 

but only at the beginning of its section . 

 

 
Fig. 1.  The schedule of the first approximation (the first 

two terms of the series) and regular part of the asymptotic 

behavior at the boundary layer for protection function   

z(t, ) 
 

 
Fig. 2.  Schedule of regular member of the zero error and 

the border of the asymptotic solutions for the protection 

function with respect to the numerical one 
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Fig. 3.  Graph of error of the first approximation of 

regular and border of the asymptotic solutions for the 

protection function with respect to its numerical solution. 

 

As can be seen from the graphs, the error decreases 

with increasing number of terms in the expansion in 

powers of . 
 

7. Estimates of the cost of protection 

 

We use the function 

 

 

T

CdtzzcTC

0

00 )()( ,  (6) 

 

where:  0С  – the cost of fixed protection;  0z  – the value 

of fixed protection;  )(zc  – cost function, which can take 

the form of a), b) and c) below. 

We integrate, taking T=6.5 (the time during which 

the necessary protection of the system will take a value 

less than 0z ) and write down the results: 

 

а) zzc )( ,   C=1270; 

б) 
2)( zzc  ,  C=1744; 

в) zzzc ln)(  ,  C=1421. 

 

A disadvantage of the cost function (6) is that the 

formula did not account for the protection increases with 

the increasing reaction rate . Therefore it is suggested 

the following clarification: 

 

       0

0

max 0, ' , (7)

t

cc z z z K z d C       
 

 

wherein the coefficient K is selected from considerations 

of the reaction speed value contribution in the total cost.  

In the experiments K was chosen, such that the 

contribution rate of charge and other factors was 

equivalent (K = 0.01).  But as   increases, the integration 

period is reduced without limit together with the integral 

value. This does not fit the actual conditions. 

Therefore the task of optimizing the cost function 

that depends not on a one-time operation of the system 

but also on all the contingencies that can happen for the 

entire life span of the system as well as the actual cost of 

purchasing the system.  

 

Then the cost function takes the form: 

 

      , , , (8)S n c z t       
 

 

where: c(z(t)) is a function (7); () is a function of the 

purchase price of protection system. 

A coefficient n is numerically equal to the number of 

emergency situations in which the protection system goes 

from a stationary mode and for each adverse factor It is 

calculated using the formula n = T × N, where T is the 

average life-term of the protection system, N – the 

average number of emergencies  in a year. 

This makes it possible to calculate the minimum cost 

of the whole system and say what speed parameters  and 

 we need to buy it. The problem is reduced to one-

dimensional optimization of  S (,)  for small .  Here is 

an example for n = 10.  The function in (8) is chosen in 

the form: 

 , .
2


   

  

 
Fig. 4.  Schedule of value S on the parameter    at  n = 10 

 

The minimum is achieved when    0.294 and the 

value of the cost function   S ()  41792. 

 

 

CONCLUSIONS 

 

In this paper there are first obtained or improved the 

following results and methods: 

1. For the first time there proposed a dynamic model 

of the system with protection from harmful factors taking 

into account the great difference in order of specific 

operating times and speeds of the subsystems. 

2. For the “singular” differential equations of this 

model there improved and applied the method of 

asymptotic expansion in small parameter of the solution 

taking in view of the phenomenon of boundary layer. 

3. The method [8] got its further development, which 

allowed to determine the total cost, depended on the 

intensity of dynamic protection functions. It uses 

previously obtained analytical expressions and the variety 

of cost functions for the specific cases of protection. 

The paper also proposes for practical application the 

approach that saves the total cost of the protection [6].  

For this purpose were studied times and the system states 

when the intensity of harmful factor  u(t)  does not exceed 

the threshold of dynamic protection action and hence the 

value  z0  of static protection may be redundant. 
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