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Introduction 

Investigations of perspective (including post-quantum) asymmetric cryptanalytic transforms 

such as asymmetric code (ASC), key encapsulation protocol (KEP) and digital signature (DS) con-

firm the promising use for constructing post-quantum transformation standards in polynomial rings 

over finite fields [1-4]. The main candidates for constructing the asymmetric cryptographic trans-

forms are NTRUEncrypt ANSI X9.98 [1], NTRU Prime [2] and NTRU Prime Ukraine [3]. Special 

attention was paid to the ASC and KEP construction in [1], since they provide cryptographic stabil-

ity up to 256 bits of classical stability and up to 128 bits of quantum stability. 

At the same time, the standards of symmetric cryptographic transformations have been con-

structed and used, which provide cryptographic stability of 512 bits of classical and 256 bits of 

quantum stability [5, 6]. Therefore, in our opinion, in the long run, the ASC, KEP and DS of 6-7 

levels of stability are needed. Moreover, under the 6th level of security it is proposed to understand 

resistance against 384 bits of classical cryptographic stability and 192 bits of quantum cryptograph-

ic stability, respectively, and under the 7th level of security it is proposed to understand resistance 

against 512 bits of classical cryptographic stability and 256 bits of quantum cryptographic stability, 

respectively. The implementation of 6-7 levels of stability is associated with the complex problem-

atic task of constructing common parameters and keys for cryptographic transformations in a ring of 

polynomials over finite fields for recognized and accepted security models [4, 9]. 

The purpose of this paper is to carry out research and develop an effective practical algorithm 

for construction and experimental confirmation of the built-in system-wide parameters and keys of 

cryptographic transformations of the ASC and KEP of 6-7 levels of stability based on 

transformations in a ring of polynomials over finite fields. 

1. Method for calculating general parameters for the algorithm (NTRU Prime Ukraine) 

1.1 Basic concepts and notation  

Let us consider the general provisions regarding the algorithm of the ASC in the ring of 

polynomials over a finite field called NTRUPrime [2, 4]. The generation of system-wide parameters 

is one of the important stages of the ASC mechanism in this algorithm. Let's consider its general 

provisions regarding the general parameters of NTRUPrime. 

Let us denote the ring of residue classes Zl  modulo l  for any odd number l . Elements of such 

a ring are identified with integers belonging to the segment  1 2( 1),1 2( 1)l l   . For any Za  

the record moda l , means the unique integer  1 2( 1),1 2( 1)a l l     such that moda a l . Let 

us fix the general parameters of the algorithm NTRUPrime: a natural number t  and different prime 

numbers ,n q  such that  

max{3, 2 }n t , 48 3q t   and polynomial 1nx x  ,    (1) 

which is irreducible over the field qZ  [2,4]. Let us also denote the ring of polynomials 

Z[ ] / ( 1)nR x x x   , / Z [ ] / ( 1)n
qR q x x x   , 3/ 3 Z [ ] / ( 1),nR x x x  

 
(2) 

where / 3 /R R q R   as sets. 
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From the above it follows that in the NTRUPrime the ring of polynomials /R q  is a field that 

consists of nq  polynomials of the form 1
0 1 1

n
nu u u x u x 
     , where iu  are integers from the 

segment 

 1 2( 1),1 2( 1)q q   , 0, 1i n  ,     (3) 

which are added and multiplied modulo q . At the same time, the multiplication of the polynomials 

themselves (elements of the field) takes place by the modulus of the polynomial 1nx x  . Also, 

for any 1
0 1 1

n
nu u u x u x R
       let us denote polynomial modu q   

1
0 1 1( mod ) ( mod ) ( mod ) /n

nu q u q x u q x R q
     .   (4) 

A similar meaning has a notation mod3u , i.e. 

1
0 1 1( mod3) ( mod3) ( mod3) / 3.n

nu u x u x R
        (5) 

Polynomial u R  of the (2) type is called small polynomial, if / 3u R , that is, the 

coefficients of the polynomial take values (-1, 0, 1). Also, we will call such a polynomial t-ternary 

(small) if it has exactly 2t nonzero coefficients (-1, 1). 

For any 1
0 1 1

n
nu u u x u x R
       we will use such notation  

0 1
|| || max | |i

i n
u u

  
 ,  

1

1
0

|| || | |
n

i
i

u u




  ,  

1 2
1

2
2

0

|| || | |
n

i
i

u u




 
  
 
 .  (6) 

Next, consider the requirement for q defined for 48 3q t  . In essence, this condition defines 

the requirement for an admissible q value, which ensures the uniqueness of the encryption and 

decryption algorithms. Moreover, as shown by the preliminary analysis, there is a need for a 

reasonable reduction of the value of q, first of all for the ASC of 6 and 7 levels of cryptographic 

stability. 

2 Determination of the ASC transformation mechanism 

After the construction of system-wide parameters, the next step is the formation (generation) of 

an asymmetric key pair. Let us consider the problem of forming an asymmetric key pair for an 

algorithm in the NTRUPrimeUkraine. 

2.1 Analysis of algorithm for key generation  

To generate the keys, we chose the standard generation scheme, which was proposed in [1]. 

1. A small polynomial GR/3 is formed, for which there exists G
-1

mod q. 

2. A t-small polynomial FR/3 is formed. 

3. The polynomial value f=3F+1 is calculated. 

4. The polynomial 3 / /h g f R q 
 
is calculated. 

Polynomials f and h are the secret and public keys, respectively. 

Note that the value h  is calculated in the field /R q  by multiplying the polynomial 3g  by the 

polynomial, which is inverse to f  in /R q . This is always possible, since the reverse 1f   polyno-

mial exists, because 1|| || 2 0f t  . 

In [7] the scheme of keys formation is offered, in which the public key is calculated by the 

formula h=G/(3F) and polynomials F, G
-1

mod3 are stored as the private key. However, such a 

scheme requires additional multiplication by G
-1

 in the process of decoding. This process also 

contains two multiplications, substantially different in time from the direct transformation, which 
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requires only one multiplication, the additional multiplication will further increase the asymmetry. 

As arguments, the authors suggest the following: a reduction in the length of keys and insignificant 

increase in time for decryption in the case of using hardware for the implementation of 

transformations. Indeed, as shown below, the value of q, compared with the version applied to 

NTRUPrime, is increased by 1.5 times. A twofold increase reduces the length of each coefficient by 

only one bit. An increase by 1.5 times, as a rule, practically does not increase the length of the pol-

ynomial element. Indeed, parameters for n=761, t=143, q≥32*143+1=4591 (simple irreducible). In 

the case of packing 3 numbers, as recommended by authors [7], it requires 37 bits, that is, 5 bytes. 

When using q≥48*143+1=6869 (simple irreducible). Packing of 3 numbers requires 39 bits, that is, 

5 bytes too. At the same time, for the private key you need to store an additional component G
-1

, 

which significantly increases the secret key. Below we will show you how to define a limit on q 

value in the conditions of key generation according to the proposed scheme to provide guaranteed 

decryption for 6 and 7 levels of stability. 

2.2 Pseudo-trapdoor one-way function 

Let us consider the requirements and the possibility of reducing q based on the analysis of a 

pseudo-trapdoor function using cryptographic transformations of the ASC and KEP type in the ring 

of polynomials over a finite field. 

It is known [1-3], that for any private key f and the corresponding public key h in the ring of 

polynomials over a finite field, there are functions of encryption hE  and decryption fD   

( , ) ( )modhE m r с m rh q   , , / 3m r R , 1|| || 2r t ,   (7) 

( ) ( (mod )mod3fD c cf q , /c R q .    (8) 

Let us determine the conditions under which the uniqueness of encryption (7) and decryption 

(8) are ensured.  

Statement 1 [1, 2]. Encryption (7) and decryption (8) uniqueness is provided for any of the 

above key data ,f g , h , r  and message m, that is  

( ( , ))f hD E m r m .      (9) 

Proof of property (9) is given in [1], but a polynomial x
n
-1 and q=2048 is considered there. Let 

us consider it, but at the same time let us define the conditions of reduction and the admissible limit 

of the value of the module q.  

Let the cryptogram ( , )hc E m r be received as a result of encryption, and when decrypting the 

message ( )fm D c  . Let us prove that m m  and define the condition of uniqueness. In the proof, 

we will substitute the value from (7) in (8). As a result, we get 

( )mod ( )modcf q mf rhf q  .    (10) 

Next we substitute the value of h in (10), as a result we have  

( 3 / )mod ( 3 )modmf rgf f q mf gr q   .    (11) 

Analysis (11) shows that if the moduli of the coefficients of the polynomials mf and 3rg of the 

polynomial 3mf rg R   are smaller than 2q  and, in general, the condition  

|| 3 || 2mf rg q  ,     (12) 

is fulfilled, then (10), taking into account (12), can be presented in the following form 

( )mod ( 3 )mod 3 .cf q mf rg q mf rg        (13) 

Taking into account (10) and (12), when decoding R/3 in the polynomial ring, we have  



 

 ІSSN 0485-8972 Радиотехника. 2018. Вып. 195 20 

( (mod ))mod3 ( )mod3 (3 )mod3 ( )mod3 0m cf q mf rg mf      .  (14) 

Finally, we will substitute (7) in (14) and have 

( (1 3 )mod3 0m m F m m      .    (15) 

Thus, to ensure the uniqueness of encryption (7) and decryption (8), that is, 

( ( , ))f hD E m r m m   it is enough to make sure that inequality (12) is fair. In essence, (12) is 

necessary, but with certain constraints even sufficient condition. 

Next, let us consider the possibility of reducing the value of q and determine to what extent this 

can be done to ensure unambiguity and no error in decoding. For this we use the lemma from [7]. 

Lemma. For any ,u v R  following inequalities are fair 

1|| || 2 || || || ||uv u v  ,  2 2|| || 2 || || || ||uv u v .     

First, let us use the lemma to clarify its proof and the conditions for uniqueness of decryption, 

and then consider the essence of its proof. 

Using formulas (14) and taking into account that in the NTRU Prime Ukraine messages are the 

polynomial m and key data are the polynomials g and F belong to R/3, that is, the polynomial 

coefficients take values (-1, 0, 1) and taking into account that || || || || 1m g   , 1 1|| || || || 2F r t 
 

we have that the maximum coefficient of polynomial (15) can be determined in this way 

1 1 1 1

|| 3 || || (1 3 ) 3 || || || 3 || ||

1 3(2 || || || || 2 || || || || ) 1 6(|| || || || || || || || ) 1 24 2.

mf rg m F rg m mF rg

m F g r m F g r t q

   

   

       

        
 (16) 

The last inequality follows from the fact that for our case 48 3q t  .Thus, statement 1 is 

proved. 

Note that if we use the polynomial F instead of the polynomial 1 + 3F in formula (16) we 

obtain 16t<q/2, which is equivalent to the requirement q≥32t+1. It is precisely this expression used 

to calculate q in [6]. 

Now let's show that the lemma also holds, that is, that it is true and its use is correct. 

It should be noted that in fact the lemma argues that the maximum value of the coefficient [7] 

is limited  

1|| || 3 || || || ||uv u v  , ,u v R .     (17) 

That is, we can conclude that the decryption of messages in the cryptosystem of the NTRU 

Prime Ukraine is correct, but subject to condition 48 3q t   [2]. Detailed proof of the lemma. Let 

1

0

n
i

i
i

u u x




  , 
1

0

n
i

i
i

v v x




  ; then the product of the polynomials u  and v  in the ring Z[ ]x  equals 

2 2

0

n
i

i
i

w x



 , where 

0

i

i j i j
j

w u v 


  , 0,2 2i n  . Consequently, the product of these polynomials in 

a ring R  equals  

2
0 1

0 1 1 2 2
1

( ) ( ) ( )
n

i n
n i i n i n n n

i

uv w w x w w w x w w x



    



       . 

Further, for any 1, 2i n   such equalities are fair:  
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1

1
0 0 0

1 1

0 1 1
0 1

0 1 1 0 1 1 2 2 1 1

1 1 2 1

( ) ( )

( )

( ).

i i n i n

i i n i n j i j j i j j i j
j j j

i n

j i j i n j i n j i n j
j j i

i i i i n i n n i

i n i n n i

w w w u v u v u v

u v u v v u v v

u v u v u v u v u v u v

u v u v u v

  

     
  

 

      
  

      

   

     

     

        

   

  

    (18) 

Hence, 

1

1 0 1 2 1
0 1

1 2
0 1

1

1
0 1 0

| |

max | | (| | | | | | | | | | | |)

max | | (| | | | | |)

2 max | | | | 2 || || || || .

i i n i n

l i i n n i
l n

l n n i
l n

n

l j
l n j

w w w

u v v v v v v

u v v v

u v u v

  

   
  

 
  




   

  

        

   

 

 

Similarly, we obtain that  

0 1| | 2 || || || ||nw w u v  , 1 2 2 1| | 2 || || || ||n nw w u v    , 

wherefrom the validity of the formula (14) follows. 

Further, based on the formula (18) and Cauchy-Bunyakovskii inequality we find that 

1 2 2| | 2 || || || ||i i n i nw w w u v     , 1, 2i n  ; furthermore, 

0 2 2| | 2 || || || ||nw w u v  , 1 2 2 2 2| | 2 || || || ||n nw w u v   , 

Where from the validity of formula (17) follows. 

3 Analysis of encryption and decryption algorithms  

The padding scheme [NAEP] [10] is used to ensure the stability of the cryptosystem against 

attacks based on the adaptively selected encrypted messages (IND-CCA2 security). Note that the 

very padding scheme is used in [1]. 

Three functions are used in the encryption and decryption algorithms shown below: 

: / 3F Message Random bits R  ,      

: { / 3:|| || 2 }G Message Random bits Public key r R r t     ,    

: / / 3H R q R ,       

The first function is a reversible mapping, that is, so that each of the functions F  and 1F  has 

a fast computation algorithm, and the last two are constructed on the basis of keyless, but stable, 

hash functions. 

Encryption algorithm [1]. 

Input: natural numbers 1 2,l l ; public key h , message 1{0,1}
l

M  . 

1: repeat 

2: generate a random equiprobable vector 2{0,1}
l

b . 

3: calculate ( , , )r G M b h , ( ( , ) ( (mod )))mod3m F M b H rh q  . 

4: until each of the number of coefficients of the polynomial m  equal to 1, 1  and 0, 

respectively, is at least t .  
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5: calculate ( , ) ( )modhE m r m rh q  . 

Output: encrypted message ( , )hc E m r . 

Decryption algorithm. 

Input: private key ( , )f g , public key h ; encrypted message /c R q . 

1: put ( ) ( (mod ))mod3fm D c cf q   , ( )modr c m q  ; 

2: calculate  1( , ) ( ( ))mod3M b F m H r    , ( , , )r G M b h   ; 

3: if ( )modr r h q  and each of the numbers of the polynomial m  coefficients equal to 1, 1  

and 0, respectively, are at least no less than t , then M M  ; 

4: else M    

5: end if 

Output: M . 

Based on the results of 2.2, the presented encryption scheme ensures that there are no errors in 

messages decoding. 

4 Selection (generation) of parameters  

Algorithms for generating parameters for classical NTRU and NTRUPrime are given in [1, 2, 

4, 7, 11] and others. In all the papers devoted to the generation of parameters, the parameters are 

formed for cryptographic stability up to 256 bits inclusive. The feature of this subsection is that it 

considers the construction of general parameters of the ASC and KEP for cryptographic resistance 
5122  against classical attacks and 2562  against quantum attacks, using the techniques outlined in 

other works. 

According to the cryptographic transformation scheme given in subsections 1 and 2, the 

following parameters should be selected: 

- a prime number n, which defines the order of a polynomial; 

- parameter t, which determines the number of non-zero elements in a small polynomial; 

- parameter q, which defines a module for polynomial coefficients that specifies an public key. 

The same module is used for cryptographic transformations of encryption and decryption. 

4.1 Selection of a minimum prime n  

To select a minimum prime number, let us consider the attacks associated with using the sieve. 

According to [14, 15], the minimum prime number must satisfy inequalities  

2 (3 2)k n       (19) 

For resistance against classical attacks, k=512 we obtain a minimum of n=877. 

4.2 Selection of the parameter t 

The task of restoring a private key ( (1 3 )mod , )f F q g   under the public key h  of a 

cryptosystem is reduced to solving an equation ( ' 3 ')h Fh G   for unknowns ,
3

R
F G , where 

|| || 2F t  and 1(3 )modh h q  . This problem can be formulated as follows. 

Let {  F R : || || 1F   , 1|| || 2F t }. We must find the polynomial F  such that  

|| ( ' 3 ')mod || 1h Fh q        (20) 

The complexity of solving a given task by a complete overview of all polynomials F  

requires | | 4
2

t n

t

 
   

 
 operations. 
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The given function increases monotonically with the increase in n. The value log2|Ф|=1088 

corresponds to the minimum n=883 and t=145 (choice of t is discussed below), which almost 2 

times exceeds the required complexity. 

To reduce the complexity you can apply attacks under the general name “meet-in-the-middle 

attacks”. 

Depending on the cryptosystem, there are various estimates of the complexity of this attack. To 

ensure the stability of the cryptosystem under consideration, with respect to the meet-in-the-middle 

attacks, the values of n  and t  are selected for a given security parameter k  based on the condition 

1 2
12 2

2

k t n

t

  
  

 
.     (21) 

The value t, obtained by formula (21), limits the cryptostability value k above, that is, to 

provide a guaranteed possibility to achieve a predetermined value of k, taking into account other 

attacks, it is necessary to set the value k with the stock to calculate the value of t in formula (21). 

That is, the value k + Δk should be used instead of k = 512 in formula (21). The value of the 

parameter Δk = k / 2 has been experimentally found in the calculation of parameters. 

4.3 Selection of q parameter  

To exclude the decryption error, you must choose a prime number for the given n  and t   

48 3q t        (22) 

such that the polynomial 1nx x   is irreducible over the field Zq . 

One set of values (n, t) corresponds to many q values. The performed analysis showed that q 

value choice may affect the length of the message being encrypted, because the increase in q value 

increases the number of bits for its internal appearance. As our calculations have shown, it is 

enough to choose the smallest q, which satisfies formula (22). 

4.4 Attack on the lattice  

For any /h R q  let us denote the lattice ( )L h  in the vector space 2 1nR   generated by the 

rows of the matrix  

1

1

1 1

1 0

0 .

0 0

n

n n

n n n

h

I H

qI





 

 
 
 
 
 

     (23) 

where nI  – is the unit matrix of the order of n , H  - is n n -matrix, whose i -th row is equal 

to the vector of the coefficients of the polynomial ( )mod( 1)i nx h x x  , 0, 1i n  , 

1(3 )modh h q  , 13  - is the element of the ring /R q , inversed to 3. 

To assess the attack on the lattice (construction of the reduced base B  of the lattice the 

traditional approach is use [8]. It is believed that the base B  is constructed using the  block 

algorithm of Korkin-Zolotarev: BKZ 2.0 [13]. The BKZ 2.0 algorithm depends on the natural 

parameters   and m , which denote the so-called block length and the number of iterations, 

respectively, and allows us to construct a base of the complete N-dimensional lattice for 
( , , )2E m NC   operations reduced according to Korkin-Zolotarev, where 

2( , , ) 0,000784314 0,366078 log( ) 0,875.E m N nm        (24) 

The values of β, m are found using the BKZ 2.0 emulator [13]. 
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4.5 Essence and vulnerability of a combined attack 

Previous studies have shown that among the potential analytical attacks the combined (hybrid) 

attack is the most vulnerable one [9]. 

The essence of the attack is as follows. First, the base of the lattice (24), which corresponds to 

the algorithm, is divided into 2 parts. The first part is used to attack the lattice, the “meet-in-the-

middle” attack is applied to the second part. To determine the parameters there is such a division 

option, for which: 

- cryptostability for each type of attacks provides the necessary value; 

- attacks require about the same time, this time is defined as the cryptostability of the system 

against a combined attack. 

In [9] a formula was got for evaluating the complexity of the “meet-in-the-middle” attack 

depending on the number of base rows used for this attack. A similar attack is considered in [7], 

where another formula is provided. Different formulas relate to the fact that methods of analytical 

calculation of this complexity are not known. We used both methods in our implementation. With 

regard to the method for determining the complexity for the lattice, in these works and others, the 

BKZ 2.0 emulator is used. 

Table 1 demonstrates the results of determining the parameters for the cryptosecurity of 512 

bits. 

 

                                                                                                   Table 1 

Parameters for cryptosecurity of 512 bits  

n t q r T'MITM T''MITM TLattice 

1259 210 10103 752 512 469 513 

1283 214 10289 797 541 494 513 

1289 215 10331 808 548 501 513 

1291 215 10331 812 549 503 513 

1297 216 10453 823 556 510 512 

1301 217 10427 830 562 514 514 

1303 217 10429 835 564 517 513 

1307 218 10499 842 570 522 513 

1319 220 10567 866 584 537 512 

1321 220 10597 867 585 537 514 

1327 221 10613 881 592 546 512 

1361 227 10957 943 630 585 512 

1373 229 11057 965 644 599 513 

1381 230 11059 981 653 608 513 

1399 233 11213 1014 674 629 514 

1409 235 11299 1035 689 642 512 

1423 237 11383 1059 704 657 514 

1427 238 11437 1068 711 663 512 

1429 238 11443 1072 712 665 512 

 

Notations in the Table: 

n – degree of the polynomial; 

t – determines the number of non-zero elements in the secret key (dazzling polynomial); 

r – the number of rows of the base for which the “meet-in-the-middle” attack is performed; 

T'MITM – the complexity of the attack, according to [9] (Bit); 

T''MITM – the complexity of the attack, according to [7] (Bit); 

TLattice – the complexity of the attack on the lattice (Bit). 



 

ISSN 0485-8972 Радиотехника. 2018. Вып. 195 25 

Gray colors highlighted the values of the parameters for which both methods gave a positive 

result. 

The results of the detailed analysis of the combined (hybrid) attack are given in [9]; it is 

assumed that, when implemented with protection from it, IND-CCA2 semantic resistance to 

quantum attack is provided.  

Conclusions 

1 In the future the cryptographic transformations of the ASC, KEP of 6-7 levels of stability 

type will be demanded. Under 6 security level, it is suggested to understand resistance against 384 

bits of classical cryptographic stability and 192 bits of quantum cryptographic stability, 

respectively, and under 7 security level l, it is suggested to understand resistance against 512 bits of 

classical cryptographic stability and 256 bits of quantum cryptographic stability, respectively. 

2. The implementation of 6-7 levels of stability is associated with the complex problem task of 

generating common parameters and keys for cryptographic transformations in the ring of 

polynomials over the finite fields for recognized and accepted security models. 

3. There is a need for a reasonable decrease in the value of q, first of all for ASC 6 and 7 levels 

of cryptographic stability. 

4. Unambiguous encoding (7) and decoding (8) is ensured for any of the above key 

data ,f g , h , r and message m. 

5. Following inequalities are fair for any ,u v R   

1|| || 2 || || || ||uv u v  ,  2 2|| || 2 || || || ||uv u v . 

6. According to the proposed scheme of cryptographic transformations, it is necessary to 

choose the following parameters: 

- prime number n, which determines the order of the polynomial; 

- parameter t, which determines the number of non-zero elements in a small polynomial; 

- parameter q, which defines a module for polynomial coefficients that specifies a public key. 

7. The results of determining the parameters for the cryptosecurity of 512 bits are shown in 

Table. 1 of this paper. It is believed that a combined attack is the most vulnerable to the ASC, IND-

CCA2 semantic resistance to quantum attack is provided, while protecting against it.  
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