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Abstract— The memory-driven innovative architecture of 

logic-free quantum computing is presented, which is 

characterized by the use of photon read-write transactions in 

the structure of electrons associated with superposition and 

entanglement of states. The quantum methods for parallel 

minimization of Boolean functions and solving the coverage 

problem based on the use of qubit data structures are 

proposed. 

 
Index Terms— Boolean function minimization, cloud-driven 

computing, quantum memory-driven computing, minimum 

coverage. 

 

I. INNOVATION FOR THE ARCHITECTURE OF QUANTUM 

COMPUTING 

The physical basis of classical quantum computing (Fig. 

1) is the leverage of superposition and entanglement 

operations over electron states, which are quite sufficient for 

the computational process [1-3]. The electron performs a 

memory function for storing a bit of information. The low 

and high electron orbits correspond to the values of zero and 

one. A functionally complete basis for creating a quantum 

computing architecture is represented by the operations of 

superposition and entanglement, which can be put into 

correspondence with the traditional logical basis or-not. In 

set theory, an isomorphism in the form of a “union-

complement” pair is put in the given basis.  

The superposition operation in quantum physics is 

isomorphic to logical inversion or set-theoretic complement 

in the algebra of logic. Therefore, it is natural that each state 

of a binary digit (an electron), after applying this operation 

to a bit of information, knows everything about each other 

wherever they are, up to the inversion ai / ai . 

Further, based on this pair of primitives (and, or), a more 

complex system of logical elements is constructed to 

organize and optimize the computational processes. 

Disadvantages of quantum classical computing are: 1) The 

high cost of maintaining the temperature conditions for the 

operation of quantum atomic structures at a level of -270 
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degrees Celsius; 2) Observability of the results of 

computational processes, leading to data destruction after 

reading. 

	 
Fig. 1. Two types of quantum computing 

Innovation in the architecture of quantum computing is 

determined by the elimination of logic, associated with 

superposition and entanglement. The analogy can be the 

memory-driven architecture of the classic computer, free of 

reusable logic. In such a computer, there is nothing but a 

memory, where a transaction (write-read operation) is 

performed on the address memory. Transactions are 

sufficient for organizing any computational process by 

using a unique characteristic equation [2, 3]: 

Mi = Qi[M(Xi)].  

Here is the memory for the: vector-state of the 

computational process; vector-qubit of a logical primitive; 

vector-address of the logic Q-coverage cell. Q-logic is 

implemented on addressable memory, where all primitives 

are also integrated under M-state vector, which forms the 

binary addresses of M(X) from the array of variable X. 

An innovative proposal is to create a quantum memory-

driven computing without superposition and entanglement 

operations based on the use of the above characteristic 

equation, which realizes read-write transactions on the 

electron structure (see Fig. 1). To exclude two mentioned 

operations from quantum computing means to significantly 

simplify the architecture based on the memory of electrons 

to perform transactions between them using quanta or 

photons. 

A confirmation of the validity of the proposed innovative 

quantum architecture can serve several recent publications 

that focus stable trends to create quantum computing, based 

on the atomic structure of memory with the transmission of 

information by means of photons or quanta [4-11]. 

Scientists from the California Institute of Technology 

created an optical quantum memory [5], in which 

information is transmitted by encoding data leveraging the 

quantum state of photons. Memory is realized on rare-earth 

elements and is capable of storing photon states with the 

help of intermediate resonators between the atom and light. 
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The dimension of quantum memory is 1000 times smaller 

than traditional classical solutions. It is implemented in a 

nanotube, which allows storing information in a very small 

volume. 

Practical realization of the idea of replacing electrons 

with photons leads to the creation of computing with a 

performance close to the speed of light [6, 7]. Korean 

researchers have taken one more step toward quantum-

optical computing. They created a photon-triggered nano-

wire transistor based on crystal and porous silicon, where 

the switching and amplifying of the current is carried out 

under the influence of a photon. The use of photons in 

logical AND, OR and NAND gates leads to the 

ultracompact nanoprocessors and nanoscale photodetectors 

for high-resolution imaging. 

Scientists from Columbia University drive on the way to 

create a transistor from one atom in molecular electronics 

[8, 9]. They created a geometrically ordered cluster of 

inorganic atoms with a central nucleus consisting of 14 

atoms, which was connected to gold electrodes, which 

allowed controlling the transistor under the influence of one 

electron at room temperature. 

The transmission of digital signals between molecules 

was achieved for the first time, which is a significant 

achievement of molecular computation development [10, 

11]. The creation of electronic components from individual 

molecules is focused on miniaturization and integration of 

electronic devices. However, the practical implementation 

of molecular devices and circuits for the transmission and 

processing of signals at room temperature is a complex 

problem, which was solved by placing SnCl2Pc molecules 

on the copper (Cu) surface. The planar orientation of 

molecules in intermolecular interaction can be considered as 

a carrier of information. In connected molecular arrays, the 

signal is transmitted from one molecule to another along 

previously specified routes, which implement logical 

operations. The phenomena of planar orientation allow the 

use of molecules with internal bistable states to create 

complex molecular devices and circuits. 

The theoretical similarity of classical computing with 

quantum lies in a general model of the computing 

architecture that uses memory for data storage and a 

functionally complete basis of primitive elements (or, not) = 

(superposition, entanglement) for the implementation of 

arithmetic logic operations on data. 

What are the formal differences between classical and 

quantum computing? The first of them sequentially 

processes addressable or ordered heterogeneous data, 

spending on the procedure Q = n cycles. It is also capable of 

processing homogeneous data in parallel and in one 

automatic cycle. If the data are not ordered and are sets, then 

the limiting computational complexity of their processing on 

a classical computer depends on the power of the two sets 

and is defined as Q = n´m.  For example, to intersect two 

sets: 

M1ÇM2 ={Q,E,H}Ç{E,H,J} ={E,H}
 

it is necessary to spend 6 automatic cycles. Quantum 

computing eliminates this drawback associated with the 

quadratic or multiplicative computational complexity of the 

intersection procedure on a classical computer. He solves 

the problem of simultaneous and parallel processing of set-

theoretical data. An example of this is the parallel execution 

of the above-mentioned operation of intersection over sets 

in one automatic cycle. To do this, the operation of 

superposition (union) of primitive symbols, entering into 

sets: 

M1ÇM2 ={V}Ç{C} ={P} ={E,H},
 

taking into account a closed set-theoretic alphabet [14]: 

B*(Y)={Q, E, H, J, O={Q, H}, I={E, J}, A={Q, E}, B={H, 

J}, S={Q, J}, P={E, H}, C={E, H, J}, F={Q, H, J}, L={Q, 

E, J}, V={Q, E, H}, Y={Q, E, H, J}, U = Æ}.  

The symbols of the alphabet represent the set of all 

subsets on the universe Y, which are composed by 

superposition of primitives. Quantum superposition makes it 

possible to concentrate several discrete states at one point in 

the Hilbert space. Similarly, the join operation also creates a 

symbolic image in a single point in the discrete space 

containing several states. 

Based on the mentioned, it's enough to just use a multi-

valued closed alphabet to simulate quantum computing on a 

classical one. But for this it is necessary to first create a 

symbolic system (set theory algebra) for the encoding of 

states. The simplest is the Cantor algebra, which operates 

with two discrete states and creates 4 symbols: 

Ak = {0,1,X = {0,1},Æ}. The symbols of this alphabet are a 

set-theoretic interpretation and isomorphism of the qubit. 

Otherwise, the superposition of two states of one qubit 

creates 4 symbols. Naturally, two qubits are capable to 

generate 16 states, three qubits – 64 states. In the general 

case, the number of states Q has a dependence on the 

number of qubits n, which is represented by the following 

formula: Q = 22n
.  

For parallel execution, but already logical operations on 

qubits, it is necessary to encode the primitive symbols of the 

alphabet with a unary binary code. The remaining symbols 

are obtained by superposition of primitive codes. The 

exception is the character code of the empty set, which is 

obtained by applying the logical and-operation. For the 

Cantor algebra the correspondence table "Symbol-Code" 

has the following form: 

ai Î Ak 0 1 X Æ

C(ai) 10 01 11 00
.

 

The payment for the parallelism of logical operations on 

sets in a classical computer is a significant increase in the bit 

length (register, memory) for encoding symbols of the 

alphabet. A similar correspondence table for encoding the 

hexadecimal alphabet B*(Y) has the form: 

ai Î B* Q E H J O I A B S P C F L V Y Æ

C(ai ) 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0

0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0
0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0
0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0

.

 

Thus, the expansion of the power of the set-theoretical 

alphabet can be matched with the build-up of qubits in a 

classical quantum computer. This makes it possible to 
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perform computational procedures in parallel and in one 

automatic clock cycle based on the leverage of logical (set-

theoretic) operations. 

As for the tabular model of a logical element, it is initially 

represented by a set of rows or by a set of discrete relations 

between input and output variables. Instead of such set 

amount, a qubit vector of output states is proposed, oriented 

to addressable parallel simulation of digital logic circuits. 

Replacement of an unordered row set of a truth table by an 

ordered vector of addressable states makes it possible to 

create parallel computation on classical computers by 

increasing the memory for unary encoding of each state. 

Otherwise, the superposition of n elements of a finite set in 

a quantum (Q) computer has a one-to-one correspondence to 

the n-dimensional vector in the classical (C) addressable 

computer, Fig. 2. This vector is obtained by performing or-

operation on unary codes of primitive elements of the 

original set. Naturally, any intersection (and), union (or), 

addition (not) in C-computer of unary data codes is 

performed in parallel in one automatic cycle, as in a Q-

computer. The pay for the speed is the increase in the 

memory (the number of bits) for unary encoding of 

symbols, relative to positional encoding, which is 

determined by the following expression: Q = n / log n. 

 

 

Fig. 2. Superposition of primitive elements and logical union of vectors 

Thus, the expansion of the power of the set-theoretical 

alphabet can be matched with the build up of qubits in a 

quantum computer. This makes it possible to perform 

computational processes in parallel and in one automaton 

clock cycle on the basis of the use of logical (set-theoretic) 

operations. 

The superposition of n elements of the finite-set in 

quantum (Q) computing corresponds uniquely to the n-

dimensional vector in the classical (C) addressable 

computing, which is obtained by applying the or-operation 

to the unary codes of the symbols of the original set 

executed in parallel in one automaton clock cycle. 

An optimal solution of the coverage problem [12] is 

obtained by using the Quantum Coverage Processor (QCP), 

which creates all possible combinations of input vectors in 

the form of qubit data structures represented by a set of all 

subsets, Fig. 3. The circuit has a logic analyzer at each 

register output, which determines the completeness of the 

coverage by executing and-operation on all bits of the 

register variable. The number of such vector-bit converter 

functions corresponds to the number of elements and is 

equal to Q = 2n -1. The bit results of executing and-

operations are integrated into the register of RG analysis, 

which identifies the obtained coverage by unit bits. The last 

digit of the register, equal to 1, indicates the existence of a 

positive result obtained during the search for coverage. 

 

Fig. 3. QC-Processor for searching an optimal coverage  

In this case, the leftmost unit in the RG register-analyzer 

determines the minimum coverage. The circuit is also 

designed to determine the primitivism or uniqueness of 

input vectors that is identified by zero values in all digits of 

the register-analyzer, except for the last one that is equal to 

1 in this case. The hardware complexity of the register 

digital circuit for searching the optimal coverage, where n is 

the number of rows, m is the length of the register, is 

determined by the following analytical expression:  

Q = [2n+1 +2n]´m+2n.  

The computational complexity of cumulative procedures 

for searching the optimal coverage is n automatic cycles in 

the worst case. Xor-functions can be used in logic elements 

instead of or-operations, which allows solving problems of 

identification and recognition of cyber-objects represented 

in vector form. The following axiom is used here: the xor-

operation of two vectors-primitives creates their logical 

union or superposition. Thus, n objects of discrete vector 

space are recognized, if all xor-combinations (except the last 

one) form zero values in the output of and-analyzers. 

Example 1. Determine the minimum coverage of the eight 

bits of the following table by unit values:  

X - Inputs 0 1 2 3 4 5 6 7

1 1 0 0 1 0 0 1 0
2 0 1 1 0 1 0 1 1
3 1 0 0 0 1 1 1 1
4 0 1 1 1 0 0 0 0

 

Four register variables X = (1,2,3,4) of the circuit forms 

the following state of the register-analyzer: 

RG = 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1  
Single values of the register show the existence of four 

possible solutions of the problem: C = {3,4}, {1,2,3}, 

{2,3,4}, {1,3,4}, {1,2,3, 4}. The minimum coverage is 

provided by two input vectors: C = {3,4}, which is 

identified by the leftmost unit in the register-analyzer RG. 

The QCP structure can be simplified by removing the 

register, which stores the search results for the optimal 
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coverage, Fig. 4. In this case, the QCP circuit becomes 

strictly logical, where the positive result of the search is 

determined in a single automaton clock by the unit value of 

the output state of the integral or-element. The optimal 

coverage will be identified by the unit value of the output of 

and-element, which is topologically closer to the external 

inputs of the circuit. 

 
Fig. 4. Combinational QC-Processor for searching coverage 

Example 2. A structure of xor-elements is presented that 

solves the problem of determining the set of vectors-

primitives fed to the inputs of the digital circuit, Fig. 5. The 

positive result of the solution is defined by the presence of 

two rightmost unit coordinates of the vector-analyzer RG. 

Explanations. Xor-operation for n primitives (vectors) 

always creates their union. Here we are talking about such 

coding of n objects in discrete cyberspace, when the 

simultaneous existence or superposition of all objects 

becomes possible within the framework of the form 

represented by one vector. This means that proper unary 

encoding n objects results in the situation when any 

superposition except for the last one (when all n vectors are 

used) will be incomplete; this results in the appearance of 

zero coordinates, which form the zero value of the outputs 

of and-analyzers. 

 
Fig. 5. A circuit for generating a set of vectors-primitives  

The combinational QC-processor is proposed for parallel 

solving the coverage problem, which is characterized by 

simultaneous calculation of all possible combinatorial 

variants of coverage through hardware implementation of 

superposition operation, which makes it possible to increase 

the performance of procedures in several times in searching 

the optimal solution. 

II. THE METHOD OF QUANTUM MINIMIZATION OF BOOLEAN 

FUNCTIONS 

The quantum representation of data in the form of a 
superposition of unary codes can be used to significantly 
simplify the method of undetermined coefficients while 
minimizing Boolean functions [13]. 

Statement. Any complex truth table of a discrete object 
can be represented by no more than two vectors of quantum 
coverage under unitary encoding (UC) of input states. The 
procedure that illustrates this statement is shown in Fig. 6. 
Zero and unit truth table cubes are shown here (input states, 
which are unary coded and logically combined, VUC). As a 
result, two quantum-coverage vectors are obtained, each of 
them can represent a logical function in the form of a qubit 
coverage. 

Suppose there is a table T = Tij, i =1,m;  j=1,n.   In the 

worst case, the number of states in each column of the table 
(matrix) is m. This number of states can be represented by m 
bits of a unitary code. (For example, a single line (11) 
consisting of two binary digits can represent two symbols of 
the Cantor alphabet: 

Ak = {0®10; 1®01;X®11;Æ®00}.  

 
Fig. 6. The model for generating qubit coverage  

As a result, we obtain a matrix of dimension m by n, 
where each cell contains m-bit vector. Applying a 
superposition operation or a logical union to all rows of a 
table through unitary encoding creates one row that forms in 
a compact form the relations previously represented by the 
source table. For example, all binary-decimal codes of input 
states of a three variable logical element are represented by a 
vector (11111111), if the following encoding is applied: 000 
– 10000000, 001 – 01000000, 010 – 00100000, 011 – 
00010000, 100 – 00001000, 101 – 00000100, 110 – 
00000010, 111 – 00000001. However, the truth table is a 
functional match  

Y = f(X),X®Y,X ={x1, x2,...,xi,..., xn},Y ={0,1}.
 

Taking into account that the function is defined on two 
discrete values {0,1}, the binary truth table can always be 
represented by two rows; each of them is a result of 
superposition or union 0 or 1 unitary code of input actions. 
For example, after the logical union of unary codes of input 
states by unit and zero output value the truth table of a three 
input xor element has the following form: 
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a b c Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

®

a b c U - code Y
0 0 0 10000000 0
0 0 1 01000000 1
0 1 0 00100000 1
0 1 1 00010000 0
1 0 0 00001000 1
1 0 1 00000100 0
1 1 0 00000010 0
1 1 1 00000001 1

®

Ú
"Y=1
Ú

"Y=0

® 0 1 1 0 1 0 0 1 1
1 0 0 1 0 1 1 0 0

 

Thus, any truth table of a digital device can be 
represented in an explicit form by two rows-cubes of 
quantum coverage, which unite through superposition of unit 
and zero (in output state) input values of the original table. 
The cubes of a quantum coverage are always mutually 
inverse, so to define the functionality it is enough to leverage 
one of them, assuming that the second one can be quickly 
and simply completed through the inversion operation, if 
necessary. 

Taking into account the possibility of defining the truth 
table by two cubes of quantum coverage, we further suggest 
improvement of the known method of undetermined 
coefficients for minimization of the logical functions. Let 
there be a source table of undetermined coefficients to 
minimize the Boolean function of three variables [14]: 

Tij x1x2x3 k1 k2 k3 k12 k13 k23 k123 fi

0 000 k1
0 k2

0 k3
0 k12

00 k13
00 k23

00 k123
000 1

1 001 k1
0 k2

0 k3
1 k12

00 k13
01 k23

01 k123
001 0

2 010 k1
0 k2

1 k3
0 k12

01 k13
00 k23

10 k123
010 1

3 011 k1
0 k2

1 k3
1 k12

01 k13
01 k23

11 k123
011 0

4 100 k1
0 k2

0 k3
0 k12

10 k13
10 k23

00 k123
100 1

5 101 k1
1 k2

0 k3
1 k12

10 k13
11 k23

01 k123
101 0

6 110 k1
1 k2

1 k3
0 k12

11 k13
10 k23

10 k123
110 0

7 111 k1
1 k2

1 k3
1 k12

11 k13
11 k23

11 k123
111 1

 

This table is converted to the binary form of all possible 
combinatorial combinations of the input variable states, 
which can be used to form the output values of the function 
represented in the last column: 

Tij x1x2x3 1 2 3 12 13 23 123 f

0 000 0 0 0 00 00 00 000 1
1 001 0 0 1 00 01 01 001 0
2 010 0 1 0 01 00 10 010 1
3 011 0 1 1 01 01 11 011 0
4 100 1 0 0 10 10 00 100 1
5 101 1 0 1 10 11 01 101 0
6 110 1 1 0 11 10 10 110 0
7 111 1 1 1 11 11 11 111 1  

Naturally, the combinations of input values obtained in 
the cells of the table: 0,1; 00, 01, 10, 11; 000, 001, 010, 011, 
100, 101, 110, 111 are trivially transformed into unitary 
codes of binary states 10, 01; 1000, 0100, 0010, 0001; 
10000000, 01000000, 00100000, 00010000, 00001000, 
00000100, 00000010, 00000001, respectively:  

Tij x1x2x3 1 2 3 12 13 23 123 f

0 000 10 10 10 1000 1000 1000 10000000 1
1 001 10 10 01 1000 0100 0100 01000000 0
2 010 10 01 10 0100 1000 0010 00100000 1
3 011 10 01 01 0100 0100 0001 00010000 0
4 100 01 10 10 0010 0010 1000 00001000 1
5 101 01 10 01 0010 0001 0100 00000100 0
6 110 01 01 10 0001 0010 0010 00000010 0
7 111 01 01 01 0001 0001 0001 00000001 1

 

Next, a separate logical union of all unit and zero rows of 
the table in two integrating vectors is performed. As a result, 
all possible combinations of variables are obtained, which 
form unit and zero values of the function.  

Q Operations 1 2 3 12 13 23 123 f

1 Q1 = Ú
fi=1

Tij 11 11 11 1111 1011 1011 10101001 1

2 Q0 = Ú
fi=0

Tij 11 11 11 1111 0111 0111 01010110 0

3 Q = ( Ú
fi=1

Tij)Ù( Ú
fi=0

Tij) 00 00 00 0000 1000 1000 10101001 Y

 

In order to obtain a disjunctive form of minimizing 
dimension (row 3 in the above Q-table), it is necessary to 
subtract the zero cube from the unit cube of the quantum 
coverage by the rule represented in the following formula: 

Q = ( È
fi=1

Tij) \ ( È
fi=0

Tij) = ( Ú
fi=1

Tij)Ù( Ú
fi=0

Tij).  

Decrypting the resulting quantum cube Q into a 
disjunctive normal form gives the following result: 

Y = x1x3Úx2x3Úx1x2x3Úx1x2x3Úx1x2x3Úx1x2x3. 

This form is not minimal, and therefore requires solving 
the coverage problem of the simplest initial unit terms (000, 
010, 100, 111) by the solutions obtained. For the function Y, 
it is obvious that the first two terms (0x0, x00) cover the 
logical summands 3,4,5 or (000, 010, 100), which are 

redundant in accordance with the absorption rule aÚab = a,  
this makes it possible to obtain a minimal disjunctive normal 
form in the following form: 

Y = x1x3Úx2x3Úx1x2x3.  

Another solution of the coverage problem is associated 
with the use of a QC processor having 6 register inputs, 
which allows determining the minimum DNF by simulation 

of the binary codes-rows 
Xi Î X

 of the coverage table: 

T 000 010 100 111 Xi Î X

0x0 1 1 . . 1100
x00 1 . 1 . 1010
000 1 . . . 1000
010 . 1 . . 0100
100 . . 1 . 0010
111 . . . 1 0001  

 
The result of code simulation defines a minimum 

coverage as three code rows, which create a minimal 
function: 

Y =1100Ú1010Ú0001®0x0Úx00Ú111®x1x3Úx2x3Úx1x2x3. 

This method can be used to obtain the minimum DNF or 
CNF by using truth tables, where the number of zero and unit 
cube rows does not differ much from each other. Another 
application of the method is associated with a significant 
minimization of the faulty area when diagnosing digital 
systems. 

The computational complexity Q of the quantum method 
of undetermined coefficients is defined by the expression that 
forms the time for unary coding of states of the truth table 

(for comparison, Qb
is the complexity of the basic 

minimization method): 

Q = 2n ´3n;

Qb = 2n ´ 2n ´ 2n = 2n ´ 2n+n;

R =
Q

Qb
=

2n ´3n

2n ´ 2n+n
=

3n

22n
.
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Thus, the computational complexity Q of obtaining 
compact quantum coverage for minimizing Boolean 
functions is significantly smaller compared to the base 

method Qb
 of undetermined coefficients using a special 

form of the truth table. 

Excluding the preprocessing of the truth table, which 
consists in unary coding of states, the computational 
complexity of the Boolean function minimization method is 
defined by only three vector parallel operations. 

The memory costs H for storing data structures are 
formed by the dimension of the table, necessary for 
superpositioning two quantum-coverage vectors, where table 
cells are represented by unary state codes: 

H = 2n ´3n;

Hb = 2n ´ 2n = 22n;

S =
H

Hb
=

2n ´3n

2n ´ 2n
=

3n

2n
.

 

Thus, in order to obtain the compact quantum coverage, it 
is necessary to leverage a table H, which has substantially 

larger dimension than the original truth table Hb
. 

A quantum method for Boolean functions minimization is 
proposed, which differs from the method of undetermined 
coefficients by parallel execution of the superposition 
operation over 0 and 1 states of input variables represented 
by unitary codes, which makes it possible to significantly 
improve performance due to redundant memory. 

III. CONCLUSION 

1. The memory-driven innovation architecture of 
quantum computing is presented, which is determined by the 
ability to eliminate logic associated with superposition and 
entanglement of states, based on the use of the characteristic 
equation that realizes read-write transactions on the structure 
of electrons. Eliminating logical operations from quantum 
computing will greatly simplify the architecture to the level 
of the memory structure of electrons to perform transactions 
between them using quanta or photons. The formal 
difference between quantum computing and classical is 
shown, which consists in the possibility of parallel and 
simultaneous execution of logical operations on sets. 

2. A quantum method for Boolean functions 
minimization is proposed, which differs from the method of 
undetermined coefficients by parallel execution of the 
superposition operation over 0 and 1 states of input variables 
represented by unitary codes, which makes it possible to 
significantly improve performance due to redundant 
memory. A quantum method for coverage problem solving is 
also proposed, which leverages a digital logic scheme for 
quasi-parallel search for the optimal coverage. 
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